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1    Introduction 

Screen/film mammography is widely recognized as being the only effective imaging 

modality for the early detection of breast cancer in asymptomatic women [1]. Screening 

asymptomatic women using screen/film mammography has been shown to significantly 

reduce breast cancer mortality [2]. 

Breast cancer currently accounts for 32 % of cancer incidence and 18 % of cancer 

mortality for women in the United States. There were 182,000 new cases of breast cancer 

in the United States in 1993 and 46,000 deaths. Five year survival rates are generally very 

high (93 %) for breast cancer staged as being localized, falling to 72 % for regional disease 

and only 18 % for distant disease [3]. The early detection of breast cancer is clearly a key 

ingredient of any strategy designed to reduce breast cancer mortality. 

Major advances in screen/film mammography have occurred over the past decade [4] 

which have resulted in significant improvements in image resolution and film contrast. Of 

major importance is that these improvements have been achieved at reduced radiation 

doses. Despite these advances, however, screen/film mammography remains a diagnostic 

imaging modality where image interpretation remains very difficult. Breast radiographs are 

generally examined for the presence of malignant masses and indirect signs of malignancy 

such as the presence of microcalcifications and skin thickening. Unfortunately, it is unlikely 

that major improvements in imaging performance will be achieved by technical advances in 

screen/film radiography alone. 

The major reason for poor visualization of small malignant masses is the minor 

difference in x-ray attenuation between normal glandular tissues and malignant disease [5]. 

This fact makes the detection of small malignancies problematical, especially in younger 

women who have denser breast tissue. Although calcifications have high inherent 

attenuation properties, their small size also results in a low subject contrast [6]. As a 

result, the visibility of small tumors, and any associated microcalcifications, will always be 

a problem in mammography as it is currently performed using analog film. 

Improvements in the ability of screen/film mammography to detect small tumors and 

microcalcifications is more likely to occur by improving the visibility of these features. It 

has been suggested that as normally viewed, mammograms display only about 3 % of the 

information they detect! [7]. 

Our approach to feature analysis and classification is motivated in part by recently 

discovered biological mechanisms of the human visual system [8]. Both multiorientation 

and multiresolution are known features of the human visual system. There exist cortical 

neurons which respond specifically to stimuli within certain orientations and frequencies. 



In this report we describe exciting new results accomplished during our third year of 

study. In addition, we have continued our efforts in the development of wavelet transforms 

that exploit orientation and frequency selectivity to make mammographic features more 

obvious through localized contrast gain. Below, we describe in executive summary, recent 

accomplishments related to the objectives stated in Phase III and Phase IV of our 

Statement of Work (SOW). The methodology, approach and experimental studies are 

reported in detail in the body of this report. 

1.1    Overview of Contents 

In the next section, we describe in detail our wavelet processing algorithms, experimental 

methods and example results obtained. In addition, we list and summarize publications of 

our researchers during the past year of our investigation. 

We present our underlying criteria for designing a database of 105 abnormal cases 

which are used in the evaluation of our computer-based methods for enhancement, 

detection and analysis of masses. We take into consideration a number of issues related to 

image acquisition, image selection, and image annotation, and discuss how each of these 

points affects our design criteria. 

We present a fast implementation of the discrete dyadic wavelet transform, which we 

have extensively used for the enhancement of digital mammograms [9, 10, 11, 12]. The 

algorithm takes advantage of symmetries of filter coefficients in the filter bank 

implementation of the transform, and of the symmetry of a mirror extended input signal. 

The described approach is not limited to image sizes that are powers of two, and therefore 

allows extraction of arbitrarily sized rectangular regions from digital mammograms. We 

derive a second derivative analog to Mallat's "first derivative of a spline" wavelet [13] and 

compute filter coefficients for a discrete filter bank implementation. 

In our earlier report, a discrete dyadic wavelet transform was applied successfully for 

enhancement of mammographic features. This was an octave-based transform with its 

scales increasing as a power of 2, and had limited capability for charaterizing signal details 

at scales between two consecutive levels, including band-limited features, such as 

microcalcification clusters, spicular lesions, and circular (arterial) calcifications. To 

alleviate this problem, and to more reliably identify features while isolating noise through 

scale space, we have developed a sub-octave wavelet transform. This is a generalization of a 

dyadic wavelet transform and has a better time-frequency resolution for mammographic 

feature analysis. Our experimental results demonstrate advantages over traditional dyadic 

wavelet transforms for mammogram enhancement. We also describe a noise reduction 

mechanism to avoid amplifying noise, such as scatter or digitization noise, during image 
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enhancement processing. 

Linear phase filters have proven advantageous in signal and image processing because 

they limit image artifacts. We applied complex Daubechies wavelets, with symmetric 

compact support, for extracting mammographic features. Also, we present a novel 

approach for denoising using complex Daubechies wavelets. We trace the evolution of 

features across distinct scales by their wavelet coefficients. By virtue of linear phase and 

dual representations of scaling functions, we show how noise can be removed while features 

preserved. 

Most image processing and computer vision algorithms assume knowledge of the proper 

spatial scale in the image. We describe an automatic technique that adaptively sets the 

proper spatial scale based on the size of local features in an image. Our current 

implementation automatically determines the proper scale based on a dynamic system 

model (motivated by analog circuit concepts) that continuously searches scale space. In the 

discussion below, we discretize and oversample a scale space representation and perform an 

optimization over this finite set. 

We show that regions corresponding to masses can be identified reliably through 

multiscale features of a continuous wavelet transform. In contrast to traditional methods of 

wavelet analysis, which compute transform coefficients at dyadic levels of scale, we show 

that subtle characteristics of mammographic features require a finer parameterization of 

scale space. 

Next, in this report, we show the derivation of a scheme to calculate the wavelet 

transform for an arbitrary scale. In addition, closed contours of zero-crossing features are 

extracted from a continuous scale frame representation, providing precise spatial 

localization for supporting local processing such as segmentation and adaptive contrast 

enhancement. 

Digital radiographs of mammographic features (fibrils and masses) within an RMI 

phantom were processed for demonstration. Our results show that a mass and fibril known 

to exist in the physical RMI phantom but not visible via traditional image processing 

techniques (including window and leveling, histogram equalization, contrast stretching, 

etc.) are made clearly visible after processing. 

We present results of local enhancement experiments applying hard thresholding of 

wavelet coefficients. The images used were synthetically generated. Care was taken for 

realistic modeling of: i) noise, ii) Point Spread Function (blurring of the image), and iii) 

masses that may exist in a digital mammogram. Our enhancement techniques were 

assessed using both analytic and psychophysical methods. 



2    Body 

2.1    Database Development 

2.1.1 Introduction 

In this section we describe our strategy for the design of a database of digitized 

mammograms. The database can take a number of forms, from a simple structured file 

system to a content-addressable database providing intelligent access to the data. In order 

to determine the type of database to construct we took into consideration its utility in the 

scope of the project and the availability of local resources, as well as a number of issues 

related to image acquisition, image selection, and image annotation. Below, we discuss 

each of these points and how they affected our design criteria. 

2.1.2 Motivation 

The first step in designing an image database is determining its intended use, as this has 

direct impact on the database design criteria. Our motivation for the development of a 

database of digitized mammograms was the need for evaluating our computer-based 

methods for enhancement, detection, and analysis of mammographic abnormalities on 

representative cases. 

2.1.3 Image Acquisition 

Good quality mammograms are essential for the construction of a database of digitized 

mammograms. Kimme-Smith [14] suggests that as a minimum requirement, films for a 

database of digitized mammograms should be supplied by facilities accredited by the 

American College of Radiology (ACR). In addition, Rangayyan et al. [15] recommend that 

films should come from institutions such as teaching hospitals where audits of all aspects of 

mammography are performed on a regular basis. 

In addition to quality mammograms, selection of a suitable spatial and contrast 

resolution is fundamental for the adequate acquisition of digitized mammograms. The 

digitizer has to be capable of measuring accurately the complete range of optical densities 

found in mammographic images. Nishikawa [16] recommends that the number of bits per 

pixel should be chosen so that image noise is adequately measured. A digitizer measuring 

optical densities in the range of 0.05-3.0 with 12 bits of quantization is generally accepted 

as a suitable choice [17, 18, 16]. 

The selection of acceptable spatial resolution for a digitizer depends on the underlying 

task, e.g., detection of microcalcifications and detection of masses. It is widely accepted 
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[17, 18, 16] that mammograms with microcalcifications should be digitized with a pixel size 

of 50 microns or smaller and mammograms with masses should be digitized with a pixel 

size of 100 microns or perhaps larger. 

Other general recommendations are to digitize all cases on the same digitizer or on 

digitizers with identical or correctable characteristics [16] and to provide calibration data 

such as the transfer function from X-ray exposure to pixel values [18]. 

In our database, mammograms were digitized with a Lumiscan 75 scanner (Sunnyvale, 

California) at 116-micron pixel resolution, 12-bit gray scale resolution and optical density 

range of 0.05-3.00. Cases in our database were supplied by Shands Hospital at the 

University of Florida, an ACR accredited and FDA certified institution. 

2.1.4    Image Selection and Annotation 

It has been suggested by several researchers [19, 17, 16, 15] that a database which is to be 

used for enhancement, detection and analysis of mammographic abnormalities should 

contain a collection of images in which a wide range of variation of normal, benign and 

malignant conditions are adequately represented. In addition, a database of digitized 

mammograms should provide annotated images showing the location, and boundaries of all 

abnormalities [19, 17, 18, 16, 15]. Furthermore, cases in the database should be 

unequivocally categorized as normal or abnormal [18, 14, 16]. Abnormal cases, benign or 

malignant, can be obtained through biopsy [18, 14, 16]. Mammograms regarded as normal 

can be obtained by selecting cases for which it is known that no cancer has developed for 

two or more years following mammographic screening [18, 14, 16]. Image annotations 

should be made by multiple radiologists experienced in reading mammograms and a 

subjective evaluation of the detectability of the lesion should be provided [19, 16]. It has 

also been suggested [19] that annotations should be hierarchically organized, e.g., 

individual microcalcifications, clusters of microcalcifications, and the overall extent of the 

abnormality should all be recorded and related. Also, Astley [19] suggests that criteria for 

classifying images within the database be established and standardized, and recommends 

that radiographic projection, glandular pattern type, diagnosis, size, location and subtlety 

of abnormalities be included as part of such criteria. 

Another issue of importance is the views that should be stored in the database. In 

standard mammographic screening, a case consists of two views of each breast 

(craniocaudal (CC) and mediolateral oblique (MLO)), for a total of four images. There is 

considerable evidence that the combination of the craniocaudal view and the mediolateral 

oblique projection detect more cancers than a single view [20]. In fact, two views per 

breast are the only accepted norm in the United States. Two views per breast allow for the 
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detection of cancer through right/left asymmetry and/or the confirmation or dismissal of 

cancer by finding its presence in the other view. Researchers [17, 21, 16, 15] have 

recognized that computer algorithms for the detection of mammographic abnormalities 

must use more than a single view and that a practical mammography database ought to 

contain at least the four views of a standard mammographic screening exam and perhaps 

previous and subsequent examinations of the same patient. 

Consideration must also be given to the distribution of normal, benign, and malignant 

occurrences within the database [14, 16, 15]. Nishikawa [16] recommends that in a 

mammography database the number of normal cases should approximately be the same as 

the number of cases for each lesion type. Also, within each lesion category, there should be 

approximately an equal number of benign and malignant cases. 

As a starting point we have confined the lesion type to masses (mainly due to the pixel 

resolution (116 microns) of our scanner and constructed a database of 105 abnormal cases 

(420 images) with a total of 118 biopsy proven masses. Following the recommendations 

outlined above we have established criteria for including cases in the database based on the 

American College of Radiology Breast Imaging Reporting and Data System 

(ACR-BIRADS). Cases are included according to the location, shape, margins, density, 

size, and surrounding glandular pattern of the underlying abnormality, and the 

mammography finding (screening assessment), and diagnosis (biopsy), see Figure 1. This 

information allows us to retrieve cases that have similar characteristics in terms of location, 

lesion appearance and diagnosis. We have annotated all abnormalities using XMam (see 

Figure 2) with the assistance of a radiologist experienced in reading mammograms and 

included a subjective evaluation of the detectability of each lesion based on the following 

scale: 

1. Extremely subtle: Dense or heterogeneously dense tissue with the margins of the 

mass not visible. Asymmetry or architectural distortion may be present. 

2. Very subtle: Dense or heterogeneously dense tissue with the margins of the mass 

partially visible on one view. 

3. Subtle: Heterogeneously dense with the margins of the mass partially visible. 

Calcifications may or may not be present. 

4. Relatively obvious: Heterogeneously dense with all margins of the mass visible or 

clustered microcalcifications present with margins of the mass only partially visible. 

5. Obvious: Fatty tissue with all margins of the mass easily visible on two views. 

12 



MAM :(Age_j: 
Right 

Location: 

□ Subareolar (S), 
O Anterior (A) 
□ Middle (M) 
□ Posterior (P) 
□ Central (C) 

RML 

Left 

Q Subareolar 
□ Anterior (A) 
□ Middle (M) 
□ Posterior (P) 
Q Central (C) 

Shape: 
□ Round (R) 
□ Oval (O) 
Q Lobulated (L) 
□ Irregular (I) 

Margins: 
□ Circumscribed Well-defined (D) 
□ Microlobulated (M) 
Ü Indistinct or Ill-defined (I) 
O Obscured (O) 
□ Spiculated (S) 

Density: 
□ High (+) 
□ Equal (=) 
□ Low (-) 
□ Fat containing Radiolucent (0) 

Size: 
 (mm) 

Surrounding Tissue Density: 
□ Fatty 
□ Scattered Fibroglandular Densities 
ü Heterogeneously Dense 
Q Extremely Dense 

Mammography Finding: 
□ Negative (N) 
□ Benign (B) 
□ Probably Benign (P) 
□ Suspicious (S) 
□ Malignancy (M) 

Biopsy: 
□ Benign (B) 
□ Malignancy (M) 

Microcalcifi cations: 
□ Present 
□ Not Present 

Palpable: 
□ Yes 
□ No 

Comments: 

Shape: 
□ Round (R) 
□ Oval (O) 
□ Lobulated (L) 
□ Irregular (I) 

Margins: 
□ Circumscribed Well-defined (D) 
□ Microlobulated (M) 
□ Indistinct or Ill-defined (I) 
□ Obscured (O) 
□ Spiculated (S) 

Density: 
□ High (+) 
□ Equal (=) 
□ Low (-) 
□ Fat containing Radiolucent (0) 

Size: 
 (mm) 

Surrounding Tissue Density: 
□ Fatty 
□ Scattered Fibroglandular Densities 
□ Heterogeneously Dense 
□ Extremely Dense 

Mammography Finding: 
□ Negative (N) 
□ Benign (B) 
□ Probably Benign (P) 
□ Suspicious (S) 
□ Malignancy (M) 

Biopsy: 
□ Benign (B) 
□ Malignancy (M) 

Microcalcifications: 
□ Present 
□ Not Present 

Palpable: 
□ Yes 
□ No 

Comments: 

Figure 1: Case characterization form. 
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CC window 

MLO window 

Figure 2: XMam showing a malignant tumor with spiculated margins. 
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Using XMam capabilities, annotations were organized hierarchically by recording individual 

masses on each view and relating instances of the same mass across views. 

Currently our database consists of 78 malignant masses (66.1 %) and 40 benign masses 

(33.9 %) distributed according to subtlety as follows: 28.8 % obvious, 28 % relatively 

obvious, 25.4 % subtle, 14.4 % very subtle, and 3.4 % extremely subtle. During the current 

year we will collect more cases in the very subtle and extremely subtle categories as well as 

cases of normal mammographic occurrences. 

2.1.5    Summary 

We have described some underlying criteria to be followed when designing a database of 

digitized mammograms. Respecting these criteria we constructed a database of 105 

abnormal cases (420 images) with a total of 118 biopsy proven masses. All cases were 

supplied by Shands Hospital at the University of Florida, an ACR accredited and FDA 

certified institution. Mammograms were digitized with a Lumiscan 75 scanner (Sunnyvale, 

California) at 116-micron pixel resolution, 12-bit gray scale resolution and optical density 

range of 0.05-3.00. All abnormalities were annotated hierarchically by a radiologist from 

Shands Hospital experienced in reading mammograms using an inhouse tool called XMam 

described previously in our 1994 annual report. Annotations include the location, shape, 

margins, density, size, surrounding glandular pattern, mammography finding and diagnosis 

based on the standardized American College of Radiology Breast Imaging Reporting and 

Data System. In addition, we developed a subjective evaluation of the detectability of a 

lesion and evaluated all lesions based on this scale. The current database consists of 78 

malignant masses (66.1 %) and 40 benign masses (33.9 %) distributed according to 

subtlety as follows: 28.8 % obvious, 28 % relatively obvious, 25.4 % subtle, 14.4 % very 

subtle, and 3.4 % extremely subtle. 

2.2    A Discrete Dyadic Wavelet Transform Implementation 

2.2.1    Introduction 

Discrete non-redundant wavelet transforms have been successfully applied previously in 

image compression applications [22, 23]. However, existing problems in the analysis of 

medical signals and images motivate the use of redundant wavelet decompositions 

presented in this report. 

The discrete dyadic wavelet transform discussed below is one example of a redundant 

representation. As originally proposed, the wavelet was a first derivative of a smoothing 

function, and was used as a multiscale edge detector to obtain a translation-invariant 
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representation consisting of edges [13]. A reconstruction algorithm to approximate an 

original signal from its multiscale edge coefficients alone was described in [13, 24]. 

In comparison, our previous work [9, 10, 11, 12] made no attempt to obtain a 

parsimonious representation from a discrete dyadic wavelet transform. Rather, the 

transform was intentionally highly redundant. This redundancy was exploited for image 

enhancement by modifying the transform coefficients and reconstructing. Here, we describe 

an efficient implementation of the discrete dyadic wavelet transform, in which we present a 

tool for contrast enhancement in digital mammography. 

When digital filtering of a finite-duration discrete signal is performed via circular 

convolution the filter will act on both ends of the signal simultaneously. This may lead to 

artifacts near both ends of the result. In image processing, mirror extension of an input 

signal is a very popular method for alleviating such boundary effects. Here, we present a 

fast filter bank implementation of the discrete dyadic wavelet transform which takes 

advantage of the fact that the input signal to the filter bank is mirror extended. For 

clarity, we describe both one and two-dimensional transforms. An extension to higher 

dimensions is given in [25]. 

2.2.2    One-Dimensional Discrete Dyadic Wavelet Transform 

A discrete wavelet transform is obtained from a continuous representation by discretizmg 

dilation and translation parameters such that the resulting set of wavelets constitutes a 

frame. The dilation parameter is typically discretized by fixed dilation steps and the 

translation parameter by integer multiples of a fixed step [26]. Unfortunately, the resulting 

transform is variant under translations, a property which makes it less attractive for the 

analysis of signals, including digital mammography. 

Sampling the translation parameter with the same sampling period as the input 

function results in a translation-invariant, but redundant representation. The dyadic 

wavelet transform proposed by Mallat and Zhong [13] is one such representation. Let us 

begin with a brief review of the properties of a dyadic wavelet transform as described in 

[13], included here for completeness. 

The dyadic wavelet transform of a function f(x) € L2(R) is defined as a sequence of 

functions 

{Wmf(x)}meZ, 

where Wmf{x) = f * 4>m{x) = Ho /(*) Mx-t) dt, ^{x) is a wavelet, and 

il>m{x) = cTmi\)(2~mx) is a wavelet expanded by a dilation parameter (or scale) 2m. Note 

the use of convolution instead of an inner product. 
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To ensure coverage of the frequency axis the requirement on the Fourier transform of 

ipm(x) is the existence of A\ > 0 and Bt < oo such that 

oo 

Ax < £ mm")\2 < Bi 
m=—oo 

is satisfied almost everywhere. The constraint on the Fourier transform of the (nonunique) 

reconstructing function x(x) 1S [13] 

oo 

£   ^(2mu;)x(2mu;) = l. 
m=—oo 

A function f(x) can then be completely reconstructed from its dyadic wavelet transform 

using the identity 
oo 

f(x)=      J2     Wmf*Xm(x), 
m=—oo 

where Xm(x) = 2-m
X(2-mx). 

In our application, processing is performed on discrete rather than continuous 

functions. When the function to be transformed is in the discrete form, the scale 2m can no 

longer vary over all m G Z; a finite sampling rate constrains the window size from being 

arbitrarily small, while computational resources may restrict the use of an arbitrarily large 

window. Let the finest scale be normalized to 1 and the coarsest scale be set to 2   . 

The smoothing of a function f(x) G L2(R) is defined as 

Srnf(x) = f *<j>m(x), 

where <f>m(x) = 2"m^{2~mx) with m 6 Z, and </>(x) is a smoothing function (i.e., its 

integral is equal to 1 and <j>(x) —> 0 as \x\ —* oo [13]). 

In Mallat et al [13], a purely real smoothing function (f>(x) was selected, whose Fourier 

transform satisfied ^ 

l<^MI2=EV;(2rn^)x(2m^). (i) 
ra=l 

In addition, it was shown that any discrete function of finite energy (g(n) € P(Z)) can be 

written as the uniform sampling of some function smoothed at scale 1, i.e., g(n) = Sif(n), 

where f(x) G L2(R) is not unique. Thus, the discrete dyadic wavelet transform of Sif(n) 

for any coarse scale 2M is defined as a sequence of discrete functions 

{SMf{n + s), {Wmf(n + s)}ro6[i)M]}n6£, 

where s is a 4>(x) dependent sampling shift. 
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For a certain choice of wavelets the discrete dyadic wavelet transform can be 

implemented within a fast hierarchical digital filtering scheme. Next, we will summarize 

the relations between filters, wavelets, and smoothing functions. 

The Fourier transform of <j){x) must satisfy [13] 

k") = e~JUS fi H(2-kuj), (2) 
k=i 

where j stands for ^/-^, the lowpass filter frequency response H(u>) is differentiable, and 

\H(w)\2 + \H{UJ + TT)|
2
 < 1 with  |#(0)| = 1. 

Computing Equation 1 for the finest two scales shows that 

^(2a;)x(2a;) = |^(u;)|2-|^(2a;)|2, (3) 

while computing Equation 2 for $(2w) yields 

i(2w) = e-iü"H{u)]>(u). (4) 

If we choose 

and 

x(2üj) = ejuJSK(uj)4>*(u), (6) 

where G{u) and K{u) are digital filter frequency responses, "*" denotes complex 

conjugation, and insert Equations 4, 5, 6 into Equation 3 we observe a relation between the 

filter frequency responses [13], 

\H{UJ)\
2
 + G{U>)K{U>) = \. (7) 

Now we are in position to choose filters that will give rise to wavelets and scaling 

functions for a discrete dyadic wavelet transform. Filters that are associated with a 

compactly supported orthonormal wavelet basis are certainly a possible choice. However, 

other choices, as described below, provide distinct advantages for the analysis of digital 

mammograms. 

Suppose we seek a wavelet such that it is compactly supported, antisymmetric or 

symmetric, exhibits good edge detection capability (i.e., equivalent to a first or a second 

derivative of some smoothing function), and is as regular as possible. With these additional 

constraints, orthonormal wavelet bases are almost completely ruled out (the Haar basis 

being the exception). 
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In [10, 11], Laine et al. proposed an extension to the family of filters described in [13]. 

In this design, the wavelet could be either antisymmetric and equal to the first derivative of 

some smoothing function 6(x), or symmetric and equal to the second derivative of 9(x). 

When the wavelet il>(x) is antisymmetric around zero (i.e., an odd function) e~^sG(u) 

is an odd imaginary function, and when the wavelet ip(x) is symmetric around zero (i.e., an 

even function) e~iuisG(u) is an even real function. The function e~JU)SH(uj) is even and real 

in both cases. 

For the wavelet iß(x) to be the first (second) derivative of some smoothing function 

9(x), ij>(u)) must have a first-order (second-order) zero at u> = 0, and, therefore, G(u) must 

have a first-order (second-order) zero at uo = 0. 

However, even after satisfying all of the above constraints there remains a large number 

of possible choices for H(u). In [10], the class of filters from [13] was extended by choosing 

2n+p 

'        , (8) 
LO 

H{LO) = e1** (cos f - 

where 2n+p <E N, n £ Z, and p G {0,1}. Once H(co) is chosen, the product G(u)K(u) is 

constrained by Equation 7. For example, choosing 

GH eJip ( Aj sin ( — 
2-P 

determines 
-, 2n+p-l    , /, ,\\2l 

A» = -l(e-^))^   E    (cos (I)) 

(9) 

(10) 

Note that H(u) is a lowpass filter, G(u>) a highpass filter, and K(u) a highpass filter for 

p — 1 and a lowpass filter when p = 0. 

The filters described in Equations 8 through 10 are finite impulse response (FIR) filters. 

For implementation, Table 1 and Table 2 list the filter coefficients for the cases 

2n+p G {1,2} and 2n+p G {3,4}, respectively. 

m 
n = 0, p = 1 n = 1, p = 0 

h 9 k h 9 k 
-1 
0 
1 

0.5 
0.5 

2 
-2 -0.125 

0.125 

0.25 
0.5 
0.25 

4 
-8 
4 

-0.015625 
-0.09375 
-0.015625 

Table 1: Impulse responses of filters H(u), G(u>), and K(u) for 2n+p <E {1,2}. 

For the wavelet to be symmetric/antisymmetric around zero, the sampling shifts for 

this family of filters must be equal to |. 
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m 
n = 1, p = 1 n = 2, p = 0 

Ä 5 ifc h 9 k 

-3 -0.0009765625 

-2 0.125 -0.0078125 0.0625 -0.009765625 

-1 0.375 2 -0.0546875 0.25 4 -0.0458984375 

0 0.375 -2 -0.171875 0.375 -8 -0.13671875 

1 0.125 0.171875 0.25 4 -0.0458984375 

2 0.0546875 0.0625 -0.009765625 

3 0.0078125 -0.0009765625 

Table 2: Impulse responses of filters H{u), G{UJ), and K(u) for 2n+p G {3,4}. 

By inserting Equation 8 into Equation 2 and using EI^i cos(2-fco>) = ^f we can obtain 

'3111(2) \ 
H = 

2 

while by applying Equation 9 and Equation 5 we see that 

(•    /u\\2n+2 

^)       ' 

Thus, the wavelet xj){x) is a first (p = 1) or a second (p = 0) derivative of a smoothing 

function 0(x), whose Fourier transform is 

Note that 8(x) is a spline of degree 2n + 1. By increasing n, Ö(u) becomes more localized in 

the frequency domain and has larger support in the spatial domain. 

For exposition, Figure 3 shows 9(x) for n G {0,1,2} and the corresponding wavelets 

V>(a;) for 2n+p G {1,2,3,4}. With the exception of the Haar wavelet (2n+p = 1), these 

wavelets are not orthogonal in the sense that their binary dilations and dyadic translations 

generate a basis of L2(R). Their regularity order is 2n+p-l (i.e., ^(x) G C2rHv'1). 

Similar to orthogonal and biorthogonal discrete wavelet transforms [26], the discrete 

dyadic wavelet transform can be implemented within a hierarchical filtering scheme. Using 

the definition of the discrete dyadic wavelet transform along with Equations 4 and 5 we can 

formulate the analysis section of such a filter bank. The synthesis section simply follows 

from Equation 7. Suppose 

FM a-jws 

F(u), (11) 

where F{u) is either H(u), G(w), or K(u) (Equations 8 through 10). We may then 

construct a filter bank implementation of the discrete dyadic wavelet transform as shown in 

Figure 4. 
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Figure 3: (a) Primitives 0(x): piecewise linear spline (dashed), cubic spline (solid), and 

quintic spline (dotted); (b) wavelets ij>(x) = ^j&: the first derivative of the piecewise linear 

spline (dashed) and the first derivative of the cubic spline (solid); (c) wavelets ip(x) = ^A^: 
the second derivative of the cubic spline (dashed) and the second derivative of the quintic 

spline (solid). 
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a» KS(Cö) 

Gs(2co) Ks(2co) 

Hs(co) Gs(4co) Ks(4co) H» 

HS(2(ö) H:(2Cö) 

Hs(4co) H^co) 

Figure 4: Filter bank implementation of a one-dimensional discrete dyadic wavelet transform 
decomposition (left) and reconstruction (right) for three levels of analysis. H*{u) denotes 

the complex conjugate of HS(UJ). 

Filters referred to in Equations 8 through 10 at level m + 1 (i.e., filters applied at some 

scale 2m) become F(2mLü), where F{u) denotes any of the three filters at level 1. In the 

spatial domain this is equivalent to upsampling the filter impulse response by 2m (i.e., 

inserting 2m - 1 zeros between subsequent filter coefficients at level 1). Noninteger shifts at 

level 1 for the class of filters with p = 1 are rounded to the nearest integer. An 

implementation with upsampling of filter impulse responses (called "algorithme ä trous") 

was first proposed by Holschneider et al [27]. The complexity of such a filter bank 

implementation increases linearly with the number of levels. 

Let us refer to the filters at level 1 (Equations 8 through 10) as "original filters," to 

distinguish them from their upsampled versions. Let an input signal x(n) be real, 

x(n) G ll{Z), n G [0,7V - 1], and let X(u) be its Fourier transform. Depending on the 

length of each filter impulse response, filtering an input signal may be computed either by 

multiplying X{uf) by a filter frequency response or by circularly convolving x(n) with a 

filter impulse response. Of course, such a periodically extended signal may change abruptly 

at the boundaries causing artifacts. A common remedy for such a problem is realized by 

constructing a mirror extended signal 

.(n) = 
x(-n-l)   if ra€ [-W,-l], 
x(n) if n€ [0,^-1], 

(12) 

where we chose the signal xme(n) to be supported in [-N, N - 1]. As will be evident 

shortly, mirror extension is particularly elegant in conjunction with 

symmetric/antisymmetric filters. 
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Let us first classify symmetric/antisymmetric real even-length signals into four types 

[28]: 

Type I f(n) = f(-n), 

Type II f(n) = f(-n - 1), 

Type III f(n) = -/(-n), 

Type IV f(n) = -f(-n - 1), 

where n £ [—N,N — 1]. Note that for Type I signals the values at /(0) and f(—N) are not 

paired with any other value, and that for Type III signals the values at /(0) and f(—N) 

are equal to zero. 

Using properties of the Fourier transform it is easy to show that the convolution of 

symmetric/antisymmetric real signals results in a symmetric/antisymmetric real signal. If 

a symmetric/antisymmetric real signal has an even length, then there always exists an 

integer shift such that the shifted signal belongs to one of the above types. 

Next we examine the filter bank implementation of a one-dimensional discrete dyadic 

wavelet transform (Figure 4) with filters derived from Equations 8 through 10 driven by a 

mirrored signal xme(n) at the input. Let the number of levels M be restricted by 

AN -2 
M < log2 ^fp (13) 

where Rmax is the length of the longest "original" filter impulse response. 

Each block in the filter bank consists of a filter and a circular shift operator (Equation 

11). Equation 13 guarantees that the length of the filter impulse response does not exceed 

the length of the signal at each block. 

Since an input signal xme(n) is of Type II and noninteger shifts at level 1 are rounded 

to the nearest integer, it follows that a processed signal at any point in the filter bank 

belongs to one of the types defined above. This means that filtering a signal of length 2iV 

can be reduced to filtering a signal of approximately one half of its length. (For Types I 

and III, N + 1 samples are needed. However, for Type III one needs to store only TV - 1 

values because of zero values always stored at the zeroth and (-N)-th position sample). 

Implementation is particularly simple for filters designed with p = 0 (Equations 8 

through 10). Filters are of Type I in this case, so the signal at any point of the filter bank 

will be of Type II. A block from the filter bank shown in Figure 4 (Equation 11) can 

therefore be implemented by 
R-l 

Fsu(n) = f(0)un(n) + £ f{r)[un(n - 2"Y) + un(n + 2mr)],      n £ [0, N - 1], 
r=l 
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Wh6re fu(-I-l) if/€[-f-l], 
un{l) = \  u(l) ifl£[0,N-l], (14) 

, u{2N-l-l)   if/G[7V,f], 

u(n) is an input signal to a block, m + 1 is a level (i.e., 2m a scale), /(ra) is an impulse 

response of some original filter, R is the length of the filter, and N is the length of the 

input signal x(n) to the filter bank. 
A filter bank with the above implementation of blocks and signal x(n) at the input 

yields equivalent results as circular convolution for xme(n) as defined by Equation 12. In 

addition to requiring one half the amount of memory, the computational savings over a 

circular convolution implementation of blocks are, depending on the original filter length, 

three to four times fewer multiplications and one half as many additions. 

A similar approach can be used for filters with p=l. However, things get slightly more 

complicated in this case, because the filters are not of the same type and the signal 

components within the filter bank are of distinct type. As a consequence, an 

implementation of blocks that use distinct original filters will not be similar, and the 

implementation of blocks at level 1 differs from the implementation of blocks at other levels 

of analysis. 
The decomposition blocks at level 1 can be implemented by the two formulas 

G,u(n) = g{0)[un(n - 1) - un(n)],      ne[l,N-l], 

and 
f-i 

H,u{n) = J2 h(r)[un(n - r - 1) + uH(n + r)],      n € [0, N], 

where un{l) is defined by Equation 14, g(n) and h{n) are impulse responses of the filters 

computed from Equations 9 and 8, respectively, R is the length of the corresponding 

impulse response, and N is the length of the input signal x(n) to the filter bank. 

Thus decomposition blocks at subsequent levels can be implemented by 

Gsu{n) = g(0)[ui{n - 2ms) - u7(n + 2m.s)],      n£[l,N-l], 

and 

Hsu{n)= Y,h(r)[uI(n-2m(r + s)) + uI{n + 2m{r + s))},      ne[0,N], (15) 
r=0 

where 

ui(l) = 

u(-l)       if/e[-f,-i], 
u{i) if le [o,7V], (16) 
u(2N-l)   iile[N + l,^-], 
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u(n) is an input signal to a block, ra + 1 identifies a level of analysis, g(n) and h(n) are 

impulse responses of the filters from Equations 9 and 8, respectively, R is the length of the 

corresponding impulse response, s = \ is the sampling shift, and N is the length of the 

input signal x(n) to the filter bank. 

The outputs from blocks Gs{2muj) and Hs(2mu;), ra G [Q,M - 1], for p = 1 are of Types 

III and I, respectively. Next, the reconstruction blocks at level 1 can be implemented by 

the two formulas 

R 
2 

K.su{n) = ]T k(r)[uHI{n - r + 1) - uIH(n + r)],      ne[0,N-l], 
r=l 

and 
R 

H*u(n) = J2 H-r)[ui{n - r + 1) + Ul{n + r)],      n G [0, TV - 1], 
r=l 

where 

unI(l) 

-«(-/) if/G[-f,-l], 
0 if / = 0, 
«(/) ifle[l,N-l], (17) 
0 if / = N, 
-u(2N -I) if / € [N + 1, ^], 

u/(/) is as defined by Equation 16, u(n) is the input signal to each block, k(n) and h(n) are 

impulse responses of the filters from Equations 10 and 8, respectively, R is the length of the 

corresponding impulse response, and TV is the length of the input signal to the filter bank, 

x(n). 

Note that both outputs from blocks K„S(LO) and H*(u)) for p = 1 are of Type II. 

The reconstruction blocks at subsequent levels can be implemented by 

#-i 

K-au{n) =YJKr + l)[uIH(n - 2m(r + s)) - um{n + 2m(r + a))],      n G [0,N], 

and 

H*u(n) = Hsu(n), 

where uni(l) is given by Equation 17, ra + 1 identifies each level, k(n) is an impulse 

response of the filter from Equation 10 and R is its length, s = \ is the sampling shift, TV is 

the length of the input signal to the filter bank, x(n), and Hsu(n) is given by Equation 15. 

For completeness, we mention that the outputs from blocks K-S{2mu)) and H*(2mu)), 

m € [1, M - 1], for p = 1 are of Type I. 

When we compare the above implementation of blocks for p = 1 to circular convolution 

driven by a mirrored signal xme(n) at the input, we observe that approximately twofold less 
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memory, four times fewer multiplications and one half as many additions are required. (For 

Type I signals an additional sample has to be saved because two values are without a pair). 

The implementation presented in this section performs all operations in the spatial 

domain. However, one could also implement the structure shown in Figure 4 with the input 

signal xme(n) (Equation 12) in the frequency domain. For short filter impulse responses, 

such as those given in Tables 1 and 2, the spatial implementation described in this section 

is certainly more efficient. For long filter impulse responses, however, filtering is faster if 

implemented in the frequency domain. Indeed, it makes sense to keep filtering with G(u), 

which has never more than three nonzero coefficients, in the spatial domain. Additional 

details on alternative implementation strategies can be found in [29]. 

2.2.3    Two-Dimensional Discrete Dyadic Wavelet Transform 

The dyadic wavelet transform of a two-dimensional function f2{xux2) € L2(R2) is defined 

as a set of functions [13] 

{WU2(x1,x2),W^Mx1,x2)}meZ, 

where 

Wi/2(xi,z2) = h*1>l
m(xux2) =nZ0h{tuhWm{xi-h,x2-t2)dt1dt2 for / = 1,2 and 

1j,
l
m(x1,x2) = 2-2mipl(2-mx1,2-mx2) are wavelets ^'(xi,^) expanded by a dilation 

parameter 2m. 

To ensure coverage of the frequency space there must exist an A2 > 0 and B2 < oo such 

that 
oo I 

M < £ El^(2m^'2m^)l2< B2 

is satisfied almost everywhere. If (nonunique) functions x\xuxi)iX2{.xux2) are chosen 

such that their Fourier transforms satisfy 

n=—co 1=1 

the function f2(xi,x2) may be reconstructed from its dyadic wavelet transform by 

co 2 

f2{xi,X2)=      E     EWm/2*xL(*1^2), 
co 2 

E I 
m=—oo 1=1 

,1   I™      „   \   c\-2m^,l(l—m, where X
l
m{xux2) = 2-2V(2-m*1,2-"^2). 

However, when processing discrete functions the scale 2m may no longer vary over all 

m e Z. Let the finest scale be normalized to 1 and the coarsest scale set to be 2M. Let us 
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introduce a real smoothing function (f)2(xi,x2) such that its Fourier transform satisfies 

00    2 

l&Ko*)!2 = J2 £^(2^,2"^)x\2mu1,2
mu2). (18) 

m=l 1=1 

Here, as in one dimension, a finite energy discrete function (#2(^1,^2) G /2(^ )) can be 

written as the uniform sampling of some function smoothed at scale 1: g2(ni, n2) 

= Sif2(ni,n2), where f2(xi,x2) € L2(R2) is not unique, and Smf2(x1,x2) = /2 * ^m^i,^)- 

Thus, the discrete dyadic wavelet transform of Si/2(ni,rc2) for any coarse scale 2M is 

defined as 

{SMf2{ni + s,n2 + s), W^/2(m + 5, n2 + 5), W^/2(ni + 5, n2 + 5)}mG[i,M]}(niri2)G^ 

where 5 is a wavelet dependent sampling shift. 

To implement a two-dimensional discrete dyadic wavelet transform within a fast 

hierarchical digital filtering scheme the wavelets were chosen to be separable products of 

one-dimensional functions: 

*l>1(x1,x2)   =   rß(x1)2<f>(2x2), 

il>2(x1,x2)   =   ^{x2)2<f>{2x1). (19) 

where <f>(x) and iß(x) were chosen as described in Section 2.2.2 (recall that the Fourier 

transforms <£(a>) and ip(2uj) were defined by Equations 2 and 5, respectively). 

From Equations 19, 5, and 2 we may write 

^(2w!, 2u2) = e-iu"G(u>i) iMifa), (20) 

where G{u>) is the frequency response of a digital filter. Choosing 

X\2uu2u2) = e«Ji((Wl)I2(W2)f(Wl)f(W2), 

X
2
{2U1,2UJ2) = e^'Kfa^MHuiWM, (21) 

where K(u) and L2{u) are digital filter frequency responses, we may compute Equation 18 

for the finest two scales by 

Xy(2"i>2u;2)x'(2wi,2u;2) = |^2(ü;I,U;2)|
2
 - 1^(2^,2cu2)|

2. (22) 
/=i 

Inserting the terms defined by Equations 21, 20, and 4 with ^2(^1,^2) = ^(^1)^(^2) into 

Equation 22 results in 

KMGML^LO,) + if(w2)G(a;2)L2(a;1) + |ff(c^)|2|#(u;2)|
2  =  1. (23) 
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Equation 23 represents a relation between the frequency responses of the digital filters used 

to implement a two-dimensional discrete dyadic wavelet transform and is a 

two-dimensional analog to Equation 7. 

Solving Equation 23 for L2(u) by substituting K(u)G{u) from Equation 7 yields the 

closed formula 

i2H = ^(i + |#H|2) (24) 

In Table 3 we provide the filter coefficients for L2(to) from Equation 24 for 

2n+pe {1,2,3,4}. 

h 
n = 0, n = 1, n = 1, n — 2, 

m p = l p = 0 p=l p = 0 

-4 0.001953125 

-3 0.0078125 0.015625 

-2 0.03125 0.046875 0.0546875 

-1 0.125 0.125 0.1171875 0.109375 

0 0.75 0.6875 0.65625 0.63671875 

1 0.125 0.125 0.1171875 0.109375 

2 0.03125 0.046875 0.0546875 

3 0.0078125 0.015625 

4 0.001953125 

Table 3: Impulse responses of filters L2{UJ) for 2n+p G {1,2,3,4}. 

As in the one-dimensional case, a two-dimensional discrete dyadic wavelet transform 

can be implemented within a fast hierarchical filtering scheme. The filter bank 

implementation follows from Equations 20, 4, and 23, and is shown in Figure 5. 

The implementation of filtering with L2{u) in two dimensions (Table 3) is simple. 

Suppose our two-dimensional structure is of size Nx x N2 and its mirror extension 

handles boundary effects. The number of levels remains restricted by Equation 13, where 

N = mm{Ni; / € [1, 2]} and Rmax is the length of the impulse response of \H{u)\2. 

Since only separable filters are used in the filter bank implementation, we can simply 

apply the one-dimensional implementation as presented in Section 2.2.2. Equations for 

implementing blocks G,(u>), Hs(w), K-.(w), and H*(u) at distinct levels and values of p 

are then straightforward. 

As previously mentioned in Section 2.2.2, the computational savings when p = 0 for 

this implementation over circular convolution and a mirror extended signal are (depending 

on the original filter length) three to four times fewer multiplications and one half as many 
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L|     HjnW ... Hs(m„) 

Gs(2co,) Ks(2co,) L(2<o2, 2co3,. .., 2cad) 

Gs(2oo2) Ks(2c0j) L(2co,, 2co3,. .., 2rod) U 

Gs(2(Dd) |~^Ks(2cod) L(2<n,, 2co2,.... 2cod_,^ 

HS(2(01)HS(2(D2)...HS(2(O(1)  U-   ^(o,)^^)... ^coj 

H;(CO,)H;((O2) ,,, H>d)   p 

Figure 5: Filter bank implementation of a two-dimensional discrete dyadic wavelet transform 
decomposition (left) and reconstruction (right) for two levels of analysis. H*(u) denotes the 
complex conjugate of Hs(u>). 

additions. Of course, for longer filters a frequency domain implementation may be more 

efficient. 

2.2.4    Contrast Enhancement in Digital Mammography 

In mammography, early detection of breast cancer relies upon the ability to distinguish 

between malignant and benign mammographic features. The detection of small 

malignancies and subtle lesions is often difficult. Contrast enhancement can make more 

obvious unseen or barely seen features of a mammogram without requiring additional 

radiation. 

Within a discrete dyadic wavelet transform, a framework for contrast enhancement was 

achieved by applying a (possibly nonlinear) function (referred to as "enhancement 

function") to wavelet coefficients 

{{Wm/2(m + s,n2 + s), Wlj2{nx + 5, n2 + s)}me[i,M)}(nun2)eZ
2 and then reconstructing an 

enhanced image with modified coefficients [10]. 

In [9] it was shown that multiscale contrast enhancement techniques based on three 

multiscale representations: 1) discrete dyadic wavelet transform, 2) ^-transform, and 3) 

hexagonal wavelet transform, can outperform traditional contrast enhancement techniques 

such as histogram equalization and unsharp masking [30] when applied to subtle features in 

digital mammography. Furthermore, in [12, 11, 10], it was shown that unsharp masking 
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with a Gaussian lowpass filter can be formulated as a special case of contrast enhancement 

via a discrete dyadic wavelet transform. 

The enhancement function was chosen such that: 1) low-contrast areas were treated 

more aggressively than existing areas of high-contrast, 2) edges were not blurred, 3) 

monotonically increasing, and 4) antisymmetric (i.e., odd). A simple function that satisfies 

the above conditions is [11] 

E(x) = 

x - {K- 1)T   if x < -T 
Kx if \x\ < T 
x + (K - \)T   if x > T. 

(25) 

Figure 6 shows the enhancement function from Equation 25 for parameter values K - 20 

and T = 1. 

Figure 6: The enhancement function (Equation 25 with K = 20 and T = 1). 

Filters with p = 0 (Equations 8 through 10) were found to be more suitable for contrast 

enhancement than wavelet filters designed with p = 1. It has been shown that edges change 

their position (introduce artifacts) when the wavelet coefficients computed for p = 1 are 

modified by a nonlinear enhancement function [12]. 

Figure 7 shows an original mammographic image and an enhanced image obtained by 

using filters and wavelets with 2n+p = 4 and an enhancement function defined by Equation 

25 with K = 30 and Tm = 0.12max{|W^/2(ni +s,n2 + s)\; le {1,2}, (m,n2) G Z2}, 

m € {1, Af}. The image matrix size was 775 x 436 pixels, 210 micron spot size, and the 

analysis was performed up to the fifth level (i.e., M = 5). 

Enhancement of a suspicious area of a mammogram using wavelets with 2n+p = 2 and 

an enhancement function given by Equation 25 is demonstrated in Figure 8. The 

parameters were: K = 20, Tm = 0.6max{|Wl/2(n1 + s, n2 + s)\; le {1,2}, (m,ra2) e Z
2}, 

m e {1, Af}, and M = 7. The image and enhanced area matrix sizes were 655 x 615 pixels 

and 175 x 165 pixels, respectively. 
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Additional details on contrast enhancement, by a discrete dyadic wavelet transform, 

including incorporation of denoising into the enhancement scheme, can be found in 

[10, 11, 12]. 
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•5*KH 
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Figure 7: (a) An original mammographic image containing a spicular mass, (b) An enhanced 
image with spicular borders well delineated. 
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(b) 

Figure 8: (a) An original mammographic image containing an ill-defined mass, (b) An image 

with a suspicious area enhanced. 
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2.2.5    Summary 

We computed the coefficients for filters of low order splines used as smoothing functions in 

a fast hierarchical digital filtering implementation of a discrete dyadic wavelet transform 

for both one and two-dimensional processing. A mirror extended input signal to a filter 

bank implementation of the discrete dyadic wavelet transform enabled us to take advantage 

of the symmetry/antisymmetry of both signals and filters for an efficient implementation of 

a dyadic transform. There are no restrictions on the size of the input signal which makes 

this scheme attractive for extracting arbitrary rectangular regions from digital 

mammograms. The presented algorithm is iterative across scales: a noniterative scheme 

suitable for high speed (interactive) parallel processing can be derived easily by using the 

described approach on each dyadic scale independently. 

2.3    Denoising and Enhancement via Multiscale Sub-Octave 
Analysis 

2.3.1    Introduction 

Orthonormal wavelet transforms (OWT) and discrete dyadic wavelet transforms (DWT) 

have been successfully used in various application areas, such as data compression, edge 

detection, texture analysis, noise reduction, and image enhancement [31, 26, 32, 33, 13, 24]. 

In this part of our research, both OWT and DWT were studied for denoising and contrast 

enhancement. Analysis and experiments show that a DWT has several advantages over an 

OWT for denoising and feature enhancement purposes [34, 35]. A DWT with a wavelet 

equal to a first order derivative of a smoothing function as its basis can separate feature 

variational energy (VE) from noise VE [34, 35]. This helps identify which wavelet 

coefficients to modify to enhance specific features of interest (FOI) without amplifying 

noise. The mother wavelet was a smooth and antisymmetric function with few oscillations, 

which kept denoising under a DWT less affected from pseudo-Gibbs phenomenon. This can 

be clearly seen from the results under an OWT [36, 37] compared with the results obtained 

from our denoising algorithm under a DWT [35]. The discrete filters used to compute a 

DWT have compact support requiring few taps. In addition, DWT wavelet coefficients have 

a clear meaning in that they are proportional to the image intensity changes (gradients). A 

DWT is a stable and complete representation, which guarantees that a DWT will not cause 

a loss or gain of energy. By properly modifying signal and noise VE, we can achieve 

distinct noise reduction and feature enhancement within a digital mammogram. 
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A framework for multiscale wavelet analysis was implemented as a research tool for 

denoising and feature enhancement [11, 12]. Here, we address both signal or image 

restoration and enhancement problems via wavelet shrinkage and feature emphasis. This 

approach takes advantage of both soft-thresholding and hard-thresholding wavelet 

shrinkage techniques to eliminate noise while preserving the sharpness of prominent 

features. It also incorporates local energy gain for nonlinear processing to enhance contrast 

within structures and along object boundaries. Thus, feature restoration and enhancement 

were accomplished by modifying the gain of a signal's VE. Methods have been developed 

for achieving denoising and feature enhancement, such as regulated soft-thresholding and 

adaptive VE gain processing combined with hard-thresholding to remove small noise 

perturbations [34, 35]. 

Even though DWT-based denoising algorithms have produced superior results 

compared to other methods, we point out that the DWT has limited ability to characterize 

band-limited features, such as texture, and subtle features of mammographic images. A 

DWT is an octave-based transform with its scales increasing as powers of 2. We cannot 

visualize or detect the signal details for scales between two consecutive levels of a DWT. To 

alleviate this problem, and to more reliably isolate noise and identify features through scale 

space, we have developed a sub-octave wavelet transform [38], which is the generalization 

of the DWT. A sub-octave wavelet transform provides a means to visualize signal details 

within sub-octave frequency bands with equally-spaced division within each octave band 

and is able to characterize the signal details more precisely. The theoretical development of 

a sub-octave wavelet transform and efficient implementation were undertaken in this study. 

2.3.2    Sub-Octave Wavelet Transform 

A wavelet transform can be completely characterized by a family of wavelet bases used for 

decomposition and reconstruction. If a family of wavelets bases {</>«(*)} is complete and 

orthonormal, the wavelet transform is usually called an orthonormal wavelet transform. A 

Haar wavelet is a simple example of orthonormal wavelets. The problems with a Haar 

wavelet is that it is a discontinuous function and not localized in the frequency domain. 

The filters {H, G) for performing an orthonormal wavelet transform satisfy the following 

equation 
\H(u;)\2 + \G(co)\2 = l. (26) 

If the family of bases {ipn{x)} is complete and linearly independent, but not 

orthonormal, the wavelet transform is called a biorthogonal wavelet transform. More 

generally, if the family of wavelets {M*)} is not linearly independent and redundant, they 

form a wavelet frame [39]. 
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For a discrete dyadic wavelet transform, we relax the orthonormal constraint and can 

have different decomposition and reconstruction wavelets as long as the corresponding 

high-pass filters G{u),K(tjj) satisfy the following equation 

\H(LO)\
2
 + G(üO)K(LO) = 1. (27) 

In the section below, we develop a sub-octave wavelet transform (SWT) for denoising and 

enhancement. 

1-D Sub-Octave Wavelet Transform 

In this section, we show that if we further divide each octave band into M 

equally-spaced sub-octave bands, M basis wavelets can be used to capture the detail 

information of a signal in each sub-octave frequency band. The M wavelet functions are 

represented as ißm(x) <E L2(R), where ra = 1,2, ..,M. The M-sub-octave wavelet transform 

of a 1-D function f(x) <E L2(R) at the scale 2j and location x, and for the ra-th sub-octave 

frequency band is defined as 

W$f(x) = f*1>%(x), (28) 

where il>%(x) = ^m(fj) is the dilation of the ra-th basis wavelet ij>m(x), sometimes called 

the ra-th analysis wavelet, at scale 2j, ra = 1,2,..., M, and j € Z. In the frequency domain, 

we have 

W$f(u) = f{u)$m(Vu,), (29) 

by taking the Fourier transform of Equation 28. To have a more flexible choice for the M 

basis wavelets, we impose that the wavelet functions satisfy a wavelet frame condition 

(similar to [13]) 
+oo       M 

A<  E  £l^m(2MI2<i?, 
j=—co m=l 

where A and B are positive constants and u G R. In the spatial domain, we have 

+oo       M 

M\f{x)\\2 < E EITO/WII2 ^ BWf(x)W2- 
j——oo m=l 

The function f(x) can be recovered from its sub-octave wavelet transform by the following 

formula 
+co       M +oo       M 

f(x)=   E   £W£/*7S(s)=   E   E/*^*72™W, (30) 
j=-oo m=l i=-oo m=l 

where -fm(x) is the ra-th synthesis wavelet for the inverse sub-octave wavelet transform. 

The frequency response of {i/>%{x) | ra = 1,2,..., M) together at any scale V are required to 
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capture the details within an octave frequency band. For perfect reconstruction of f(x), 

ip™i(x) and j™j(x) should satisfy 

+00      M 

£   £^m(2M7m(2V) = 1. (31) 
j=—co m—1 

Equation 31 can be obtained by taking the Fourier transform on both sides of Equation 30. 

To ensure perfect reconstruction, the whole frequency axis should be covered by the 

analysis and synthesis wavelets, thus the reconstruction wavelets -fm(x) can be any 

functions whose Fourier transforms satisfy the above equation. There are, in fact, many 

choices for the decomposition and reconstruction wavelets to satisfy the above equation. 

Here we only discuss the class of wavelets which are the first order derivatives of a 

smoothing function, such as spline functions of any order. A 1-D sub-octave wavelet 

transform can be easily extended to a 2-D sub-octave transform by computing sub-octave 

wavelet coefficients along horizontal and vertical directions, as explained in the following 

section. 

2-D Sub-Octave Wavelet Transform 

The M-sub-octave wavelet transform of a 2-D function f{x,y) € L2(R2) at the scale V 

and location (x,y), and for the m-th sub-octave frequency band is defined as 

W^f(xty) = /*^(x,y), (32) 

where ^(x,y) = ^'m(§, £), « = 1,2 (for horizontal or vertical direction), 

m = 1,2, ...,M, and j e Z. In the Fourier domain, Equation 32 becomes 

WiTf(Ux,Uy) = f(uxlcoy)^
m(2^x,2^y). (33) 

The function f(x,y) can be recovered from its 2-D sub-octave wavelet transform by the 

following formula 

+00      2      M 

f(*,v)= E EE*Wf*w(Xiy) 
j= — 00   1 = 1    TO = 1 

+00       2      M 

j= — CO    j = l    771 = 1 

For perfect reconstruction of f(x,y), if>%{x,y) and i$(x,y) should satisfy 

+00       2      M 

E   E E V'm{Vuti2>uv)r
m{?u>„Vu>y) = 1. (35) 

j=—00   z=l  m=l 

This perfect reconstruction condition can be obtained by taking the Fourier transform of 

Equation 34. 
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2.3.3    Discrete Sub-Octave Wavelet Transform 

The transform parameters in a sub-octave wavelet transform are continuous variables. This 

results in a highly redundant representation. It is possible to discretize these parameters 

and still be able to achieve perfect reconstruction [39]. For digital image processing, the 

sub-octave wavelet transform of a discrete function can be carried out through a uniform 

sampling of a continuous sub-octave wavelet transform. Below, we describe the discrete 

sub-octave wavelet transform. 

1-D Discrete Sub-Octave Wavelet Transform 

In the discrete domain, we are limited by the finest scale of 1. In general, a discrete 

function can be decomposed into the details of fine-to-coarse scales, so we let 

+oo    M 

I^H|2 = E E^m(2M7m(2M- (36) 
j=l m=l 

For a J-level discrete sub-octave wavelet transform, we can write 

J      M 

l^)|2 = E E ^m(2M7m(2M + |^(2Jc)|2. (37) 

If the scaling approximation of a function f(x) at scale 2j is represented as 

Svf(x) = f*<pv(x), (38) 

then { W$f(xn), S2jf(xn) \neZ, j = 1,2,..., J, and m = 1,2,..., M } is the wavelet 

representation of a discrete function f(xn) under a J-level discrete M-sub-octave wavelet 

transform. Wgf(xn) and S2jf(xn) are uniform samplings of their continuous counterparts 

respectively. 

If we let J = 1, then we have 

M 
|^(u;)|2 = J2 4>m(2u)jm(2Lo) + \<f(2uj)\2. (39) 

m=l 

Let us assume that for each basis wavelet pair ^m{u) and 7m(u;), there exists a pair of 

corresponding functions Gm(to) and Km(uj) which need to be determined and (with certain 

temporal shift t) satisfy 

4>m(2tü) = <p(cü)Gm(Lo)e- 

7m(2u;) =(p(u)Km{Lü)ei 

For scaling function <p(ui), there exists a function H(UJ) which satisfies 

(p(2ü}) = <p{u)H(cj)e~it 
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Replacing Tpm(2iü), 7m(2cu), and <£{2LO) in Equation 39, we have the following fundamental 

relation for a sub-octave wavelet transform (SWT) 

M 

\H(Oü)\
2
 + E Gm{u)Km{io) = 1. (40) 

m=l 

The discrete sub-octave wavelet transform of a function f(xn) G P{Z) can be 

implemented by using the following recursive relations between two consecutive levels j 

and j + 1 
W^f{u)^S23f^)Gm{Vu)1 (41) 

S2J+1f(co) = S2]f(co)H(2^), (42) 

where j > 0, 1 < m < M, and 5i/H = /(ws,wy). The reconstruction 5i/(a;) from the 

sub-octave wavelet decomposition can be implemented through the following recursive 

relation „. 
M 

S2Jf(u) = Sv+1f(u;)H*(2^) + £ W^f{^)Km{2^\ (43) 
TO = 1 

where #* is the complex conjugate of H. A 3-level M-sub-octave wavelet decomposition 

and reconstruction process based on the above recursive relations is shown in Figure 9. 

The corresponding division of the frequency band is given in Figure 10. In general, for 

M-sub-octave decomposition and reconstruction of a SWT, we need to have M pairs of 

decomposition and reconstruction basis wavelets. When M is a power of 2, we can perform 

the decomposition and reconstruction using a single pair of wavelets similar to the way 

Daubechies showed in [26]. Figure 11 presents how to carry out a 2-level 4-sub-octave 

decomposition and reconstruction of a SWT using FIR filters corresponding to a single pair 

of basis wavelets. 

2-D Discrete Sub-Octave Wavelet Transform 
For the decomposition of a 2-D discrete function, we let the frequency response of a 

scaling function be defined in the following formula 

+oo    2      M 

|^K,u,y)|
2 = E E E ^(2^,2^)7*'m(2^,2^,). (44) 

j=\  i=l  m=l 

For a 2-D J-level discrete sub-octave wavelet transform, we can formulate 

I^K,^)|2 = EE E V>''m(2^,2^y)f 'm(2^,2^) + |^(2J^,2Ju,y)|
2. (45) 

If the scaling approximation of a function f(x,y) at scale 23 is represented by 

Svf(x,y) = f*<p2i(x,y), (46) 
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Figure 9: A 3-level SWT decomposition and reconstruction diagram of a 1-D function. 
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Figure 10: Division of the frequency band under the SWT shown in Figure 9. 
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Figure 11: A 2-level 4-sub-octave decomposition and reconstruction of a SWT. 

then { W£"7(zu, Vv), S2jf(xu, yv) \ u, v G Z, i = 1,2, j = 1,.., J, and m = 1,.., M } is called 

the wavelet representation of a discrete function f(xu,yv) under a 2-D J-level discrete 

M-sub-octave wavelet transform. In general, ip(x,y) is a 2-D scaling function and ipl'm(x,y) 

and f>m(x,y) are the m-th directional analysis and synthesis wavelets. There are many 

choices of these functions that satisfy Equation 45. Similar to the way 2-D wavelets are 

constructed using 1-D wavelets in [13], we use tensor products to construct 2-D sub-octave 

wavelets using 1-D sub-octave wavelets. Thus we can write 

02-m(2^,2^y) = ^(2'-V)<T(2^), 

(47) 

(48) 

(49) 

Through this construction of 2-D wavelets, we implemented a 2-D sub-octave wavelet 

transform using 1-D convolution with FIR filters of a 1-D sub-octave wavelet transform. 

Figure 12 shows the division of the frequency plane under a 2-level SWT. A 2-D sub-octave 

wavelet transform can be implemented by 1-D FIR filters along horizontal and vertical 

directions. In the left diagram of Figure 13, a fourth-order spline smoothing function, its 

first and second derivative sub-octave wavelets, and the corresponding scaling function are 

shown. The right diagram of Figure 13 presents four sub-octave wavelets corresponding to 

the first, second, and third derivatives of the smoothing spline in the left diagram. 
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Figure 12: Division of the frequency plane under a 2-D SWT. 
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Figure 13: Smoothing, scaling, and wavelet functions for a SWT. (a) Functions for a 2-sub- 
octave SWT. (b) Wavelet functions for a 4-sub-octave SWT. 
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A dyadic wavelet transform is a special case of a sub-octave wavelet transform with 

M = 1. As an example, a discrete 2-sub-octave wavelet transform is shown to divide the 

details of an octave band into the details of 2 sub-octave bands, and one sub-octave can be 

used for detecting local maxima while the other sub-octave for identifying zero-crossings. 

Thus, in this sub-octave wavelet representation, we take advantage of local maxima and 

zero-crossing representations to more accurately characterize local features. 

2.3.4 Noise Modeling 

Signal and image degradations by noise and artifacts are frequent phenomena of the real 

world image acquisition. Image degradations have a significant impact on radiologist 

performance and computer-assisted methods. In addition, noise and artifacts often make 

feature extraction, analysis, and recognition algorithms unreliable. The denoising and 

feature enhancement techniques described next improve the reliability of our image 

processing techniques. 

Additive Noise Model 

Additive noise can be (in general) represented by the following formula: 

/(x) = flf(x) + i/.(x), (50) 

where #(x) is an unknown function. The function /(x) is a noisy observation of #(x), j/a(x) 

is additive noise, and x is a vector of spatial locations or temporal samples. 

For additive noise, there are existing techniques based on mean squared error or I1 

norm optimization to remove noise, such as Donoho's wavelet shrinkage techniques 

[36, 40, 41], Chen and Donoho's basis pursuit denoising [42], Mallat's local-maxima-based 

method for removing white noise [24], and wavelet packet-based denoising [43]. 

By incorporating a denoising mechanism into our feature enhancement process, we may 

enhance contrast without amplifying noise. Subtle features barely seen or invisible in a 

mammogram, such as microcalcification clusters, spicular lesions, and circular (arterial) 

calcifications, may be enhanced via our sub-octave wavelet transform. Since we treat noise 

and features independently, we were able to obtain superior results compared to existing 

algorithms designed for enhancement alone. 

2.3.5 Wavelet Shrinkage and Feature Emphasis 

In this section, a denoising and contrast enhancement scheme based on wavelet shrinkage 

and feature emphasis is presented. In this investigation, we studied hard thresholding and 

Donoho's soft thresholding wavelet shrinkage [40] for noise reduction. The advantage of 

42 



soft thresholding is that it can achieve smoothness while hard thresholding better preserves 

features. In our unified approach for accomplishing denoising and feature enhancement, we 

took advantage of both thresholding methods. Donoho's soft thresholding method [40] was 

developed for an orthonormal wavelet transform [31] primarily with Daubechies's Symmlet 

8 basis wavelet and his denoising results showed some undesired side-effects, from 

pseudo-Gibbs phenomenon [37]. By using a SWT and basis wavelets without any 

oscillations, our method was relatively free from side-effects after denoising. Experiments 

show that a SWT with a first order derivative of a smoothing function as its basis wavelet 

separated feature VE and noise VE coefficients. In this algorithm, we adopt regularized 

soft thresholding wavelet shrinkage to remove noise VE within the finer levels of scale. We 

then apply to wavelet coefficients a non-linear gain with hard thresholding for preserving 

features while removing small noise perturbations within the middle levels of 

space-frequency. 

Wavelet Shrinkage By Soft Thresholding 

Soft thresholding [40] operation can be represented as 

u(x) = T5(t;(x),<) = sign(ü(x)) (|u(x)| - t)+, (51) 

where threshold t is proportional to the noise level and xGfl, the domain of u(x), and 

u(x) is the result of soft thresholding and has the same sign as u(x) if non-zero. The 

expression (|u(x)| — t)+ is defined as 

<i.Mi-o+={rx)|-' rrir- 
SWT coefficients can be processed for noise reduction by 

WJT'7(x) - Ts(^2T/(x),4f), (52) 

where » = 1,2 (omitted for 1-D signals), ;' = 1,..., k, k < J, m = 1,..., M, and tx£T is a noise 

and scale-related threshold. W£m,*/(x) is a modified coefficient. We recall that Donoho's 

soft thresholding method used a single global threshold. However, the noise coefficients 

under a SWT have average decay through fine-to-coarse scales, we regulated 

soft-thresholding wavelet shrinkage by applying coefficient-dependent thresholds decreasing 

across scales. 

Wavelet Shrinkage By Hard-Thresholding 

A hard thresholding operation can be expressed as 

ti(x) = TH(v(x),t) = v(x)(\v(x)\ > t), (53) 
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Soft Thresholding vs Hard Thresholding 
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Figure 14: Various thresholding methods. 

where iisa threshold value, x£D, the domain of v(x), and u(x) is the result of hard 

thresholding and has the same sign as v(x) if non-zero. The meaning of (|u(x)| > t) is 

defined by the expression 

(Kx)|>t) 1   if|u(x)|>*, 
0   otherwise. 

Sub-octave wavelet coefficients were modified by hard-thresholding for noise reduction 

by 

W£m'7(x) = TH(Wirf(x),W), (54) 

where i = 1,2 (omitted for 1-D signals), j = l,...,k, and k < J, m = 1,..., M, and fy™ is 

(in general) a threshold related to noise and scale. W^m'*f(x) is a processed coefficient. 

Figure 14 shows a functional diagram of normalized soft and hard thresholding. 

Feature Emphasis By Generalized Adaptive Gain 

Recently, several wavelet-based enhancement techniques have been developed 

[44, 45, 46, 9]. Adaptive gain non-linear processing [46, 10] has been successfully used to 

enhance features in digital mammograms. The adaptive gain non-linear processing is 

further generalized in this study to incorporate hard thresholding in order to avoid 

amplifying noise and actually remove small noise perturbations. The generalized adaptive 
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gain (GAG) non-linear operator is defined as 

EGAG(V) 

f 0 if \v\ < Tu 

sign(u) T2 + a (sigm(c(u - b)) - sigm(-c(u + &)))   if T2 < |u| < T3,      (55) 
v otherwise, 

where v 6 [-1, 1], ä = a(T3 - T2), u = sign(v)(\v\ - T2)/{T3 - T2), b G (0, 1), 

0 < Ti < T2 < T3 < 1, c is a gain factor, and a can be computed as 

sigm(c(l — b)) — sigm(—c(l + &))' 

sigm(u) = . (57) 

Ti, T2, and T3 are selected parameters. When Tt = T2 = 0 and T3 = 1, The expression is 

equivalent to the adaptive gain non-linear function in [46, 10]. The interval [T2, T3] serves 

as a sliding window for feature selectivity. It can be adjusted to emphasize local regions 

within a specific range of variation. Thus, by selecting gain values and local windows, we 

can achieve focused enhancement effects. Through this non-linear operator, SWT 

coefficients can be modified for feature enhancement by 

WiT'fix,y) = MJT * EGAG (KrJipV)) > (58) 

Mir =max(|^im/(x,y)|), (59) 
x->y 

where i = 1,2, 1 < m < M, and 1 < j < J. W^71'*"f(x,y) is a processed coefficient. Figure 

15 shows a functional diagram of the generalized adaptive gain operator. 

2.3.6    Experimental Results 

First we present experimental results based on a 1-D sub-octave wavelet transform. This is 

used to show the denoising capability of our method with features restored and enhanced 

compared with other well known denoising methods. Experimental results of our 

SWT-based denoising with features restored are shown in Figure 16. In the fourth plot of 

Figures 16(a)-(d), the denoised results are overlaid with their corresponding originals. 

After comparing with Coifman's and Donoho's methods, we can see that the results of our 

SWT-based method are visually superior and relatively free from side-effects [37]. In the 

next experiment, we show the incapability of a DWT for characterizing band-limited high 

frequency features. Figures 17(a)-(b) show the original and noisy "Doppler" signals with 

their corresponding 5-level DWT and a coarse scale approximation. The finest scale 

band-limited features (see the second plot in Figure 17(a)) are weak and obscured when 
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Complex Adaptive Gain: C=10, B=0.35. Tl=0.1, T2=0.2, T3=0.9 
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Figure 15: An example of the generalized adaptive gain function. 

noise is present (see the second plot in Figure 17(b)). These high frequency band-limited 

features are lost in a soft thresholding denoising method, which is shown in Figure 18(b). 

Figures 17(c)-(f) show a 2-sub-octave wavelet transform of the original and noisy 

"Doppler" signals. Figures 17(c) and 17(e) show first sub-octave coefficients while Figures 

17(d) and 17(f) display second sub-octave coefficients. Figure 18 shows denoised and 

enhanced results of noisy "Doppler" under a DWT and a SWT. The loss of high frequency 

band-limited features and other factors, make the result from the DWT-based method less 

attractive than our SWT-based method. 

The experimental results of enhancement with noise suppression of mammographic 

images via a 2-D sub-octave wavelet transform are also presented. This part of our 

experiment demonstrates the potential of this enhancement method without amplifying 

noise, such as background noise in [46]. Figure 19(a) shows a dense mammographic image. 

Enhancement by traditional histogram equalization is presented in Figure 19(b). Figure 

19(c) shows the result of SWT-based enhancement with noise suppression. The histogram 

equalization method makes all features in the slightly dark areas obscured. The mass in 

the middle right area of the image is enhanced and becomes visible in both methods. As 

shown in Figure 19(c), enhancement under a SWT makes barely seen tissue structures 

visible. Additional enhancement results are shown in Figure 20. Figure 20 (b) is the result 

presented in last year's report and is included for comparison. Thus, the result obtained 
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Figure 17: Limitation of a DWT for characterizing band-limited high frequency features. 
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Figure 18:  Denoised and enhanced results of noisy "Doppler" signal under a DWT and a 
SWT analysis. 
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(b) (c) 

Figure 19:  (a) A dense mammogram. (b) Enhancement by traditional histogram equaliza- 
tion, (c) SVVT-based enhancement with noise suppression. 
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(a) (b) 

(c) (d) 

Figure 20: (a) Mammogram M56 with blended phantom features, (b) Phantom image, 
(c) Nonlinear enhancement with adaptive wavelet shrinkage denoising (Gm = 20, N = 5, 
t = 0.1). (d) SWT-based enhancement with noise suppression. 
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via the SWT-based method is superior to that of traditional DWT methods of analysis. 

2.3.7    Summary 

We have shown the limitation of traditional DWT for characterizing band-limited features, 

such as subtle features in mammographic images. To more reliably isolate noise and 

identify features through scale space, we formulated and developed sub-octave wavelet 

transforms. If the number of sub-octave bands in each octave is a power of 2, it is shown 

that the sub-octave wavelet transform of a function can be implemented by a single pair of 

analysis and synthesis wavelets. FIR filters for a class of wavelets designed for a DWT can 

be used to implement sub-octave wavelet analysis. A wavelet shrinkage scheme for noise 

suppression was presented and generalized adaptive gain processing was developed to 

enhance features without amplifying noise. 

Our future efforts will include developing feature clustering techniques and statistical 

analysis for efficiently removing noise and enhancing features. A more dedicated feature 

cluster-based technique for denoising and feature enhancement is under development. We 

will also explore iterative methods for identifying coherent structures from an image via 

sub-octave wavelet analysis. 

2.4    Denoising Using Complex Daubechies Wavelets 

2.4.1 Introduction 

The purpose of denoising is to restore an image that differs as little as possible from its 

original. Thus, we want to preserve the features of an image while removing noise. 

Here, we find important features existing at one scale that propagate to the next larger 

scale. Wavelet transforms can be used to locate the singularities of an image because of 

their localization characteristics. By taking advantage of these properties, we can trace the 

evolution of features across distinct scales by their wavelet coefficients. In this investigation 

we present a new approach for denoising using complex Daubechies wavelets. By virtue of 

linear phase and dual representations of scaling functions, noise can be removed and 

features preserved. Preliminary simulation results are shown. 

2.4.2 Symmetric Daubechies Wavelets 

A family of compactly supported orthonormal wavelet bases were first constructed by 

Daubechies [31], using multiresolution analysis. In oder to construct a compactly 

supported wavelet 0, the analysis starts from a scaling function 4> with compact support. 

A multiresolution analysis of L2(R) is a sequence of closed subspaces Vj of I2(R), j <E Z, 
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satisfying 

• • • c v2 c v1 c v0 c V-! c V-2 c • ■ • 

Since the scaling function <f> G V0 C V-i, a sequence of coefficients fen € ^2(Z) exists such 

that the scaling function satisfies 

<j>{x) = V2j2hn<f>C2x-n). (60) 
n 

The associated wavelet ^ can be generated through <^ 

tf>(z) = >/25>n^(2x-ra), (61) 
n 

where 

0» = (-1)BÄU (62) 

with h* denoting complex conjugate of h. 

From multiresolution analysis, f(x) can be expressed as 

30 

/(*) = E4°<^(*) + EE*W, (63) 

where j0 is the coarsest level scale and J is the finest level scale. The coefficients s3
n and w{ 

are obtained by computing the inner products 

<=<f,hk>,        K=<f,^,k>. (64) 

Using a fast wavelet transform (FWT) algorithm, we can compute these coefficients by 

recursively convolving with filters h*n and #*, respectively, and downsampling. 

< = V2j:hl_2n4-\        < = V2j2gl_2nsl\ (65) 
k k 

where s° is the original signal. The original signal f(x) can be reconstructed, in a similar 

way, via the inverse FWT. 

st1 = V2j2K-2ksi + V2£<7»-2*«i (66) 
k k 

The block diagrams of FWT and inverse FWT algorithms are shown in Figure 21. 

Multiresolution analysis leads naturally to a hierarchical and fast scheme for the 

computation of the wavelet coefficients. In electrical engineering terms, (65) and (66) are 

the analysis and synthesis stages of a subband filtering scheme with perfect reconstruction. 

Filters hn and gn are quadrature mirror filters (QMF). 
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Figure 21: Block diagram of fast wavelet transform: (a) decomposition; (b) reconstruction. 

A linear phase property can be achieved with symmetric filters. There have been two 

distinct methods developed to generate complex Daubechies wavelets. Lawton [47] derived 

a complex valued linear phase FIR conjugate quadrature filters (CQF) from a class of real 

valued FIR CQF's by replacing certain filter zeros by their reciprocal conjugates. Lina et 

al. [48] used two parameterizations to compute complex solutions for Daubechies wavelets. 

Let the Z-transform of hn be 

H(z) = '£hnz
n,        with#(l) = l. (67) 

n 

Symmetric Daubechies wavelets have the following advantages: 

1. Compactness: The scaling function has support inside interval [- J, J + 1], where J is 

the order of the underlying analysis. 

2. Orthogonality: The orthogonality of </>m,n implies 

\H(z)\* + \H(-z)f = l. 

3. Regularity: The derived wavelets will optimize the regularity of a given compact 

support 

H'{-\) = H"{-1) = • • • = #(J)(-1) = 0. 

4. Symmetry: The filter hn must satisfy hn = hi-n, i.e., 

H{z) = zH{z~l). 
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Figure 22: Scaling functions and wavelets: (a),(b) J=2; (c),(d) J=4. 

55 



The standard Daubechies wavelets have the first three properties, while the 

parameterized solutions of symmetric Daubechies wavelets can be obtained from properties 

2, 3, and 4. Figure 22 shows complex scaling functions and wavelets, derived by Lina et al 

[49, 48], for J = 2 and 4, where (2J + 2) is the tap number for the complex filters. Note 

that the scaling function and wavelet for J = 4 are smoother than those for J = 2. The 

real part and the imaginary part of the scaling function are close to first derivative and 

second derivative of a Gaussian function, respectively. 

2.4.3    Methodology 

Previous Techniques 

There have been many noise reduction methods discussed in the literature. The 

simplest noise reduction technique is an equally weighted averaging over a neighborhood 

(mean filtering). Averaging produces an effect similar to lowpass filtering. However, 

reducing the effects of random noise results in blurring. The method of median filtering is 

similar to mean filtering in that it uses the local median instead of a local mean, and 

exhibits better performance for edge-preservation and noise reduction (for speckle noise). 

More recently, denoising based on wavelet transforms have been proposed. Mallat et al. 

[24, 13] used the local maxima of the wavelet transform modulus to analyze image 

singularities. The algorithm computed Lipschitz exponents from the evolution across scales 

of the wavelet transform modulus maxima, removed all maxima whose amplitude increased 

on average when the scale decreased, or which did not propagate to larger scales. A 

"denoised" signal was then reconstructed with an alternative projection algorithm. Mallat 

et al. [24, 13] conjectured that a signal can be perfectly reconstructed from the locations 

and values of the modulus maxima of the wavelet transform at different scales. This 

conjecture has been disproved by Meyer [50] although the reconstruction gives a good 

approximation in many cases. 

Donoho and Johnstone [40, 36] proposed a three-step method for recovery of a noisy 

signal. Their method is based on a nonlinear shrinkage of wavelet coefficients. In contrast 

to the hard thresholding of wavelet coefficients, their soft-thresholding approach provides a 

smoother means for removing noise. 

Mallat and Zhang [51] introduced a matching pursuit algorithm that decomposed a 

signal into a linear expansion of waveforms that belonged to a redundant dictionary of 

functions. With a dictionary of Gabor functions, a matching pursuit defines an adaptive 

time-frequency transform. A coherent structure is chosen by testing the amplitude ratio of 

successively extracted amplitudes with thresholded noise components. The denoised signal 

can then be reconstructed from coherent components. There is a trade-off between 
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computation time and precision. If we use too many bases in a dictionary, the algorithm 

will take a long time to converge; if a small set of bases is used, the matching may not be 

good enough. 

Two variations of matching pursuit algorithm have been proposed. Both of them 

express a signal as a superposition of a collection of libraries of waveforms. The first one 

was an adapted waveform transform by Coifman and Wickerhauser [52]. They used 

wavelets, wavelet packets, and windowed trigonometric waveforms as the libraries of 

waveforms because these bases could be implemented with fast algorithms, and thus could 

achieve high-speed interactive performance. They found the best basis in each library by 

minimizing a cost function. A signal can then be divided into two parts - coherent 

components and incoherent components - via a threshold. The incoherent component is 

then considered a new signal and decomposed again. This process is performed iteratively 

until it reaches a fixed number of decompositions or no coherent components are obtained. 

The denoised signal is obtained by superimposing the coherent components together. 

Because the bases are orthogonal, this method may not obtain sparse representations if a 

signal is composed of several non-orthogonal components. 

In another method, basis pursuit was presented by Chen and Donoho [42]. They used a 

richer libraries of waveforms as basis, including wavelets, steerable wavelets, Gabor 

dictionaries, multiscale Gabor dictionaries, wavelet packets, cosine packets, and chirplets. 

They choose the basis whose coefficients have a minimum I1 norm. The solution can be 

obtained by solving an equivalent linear program. In order to deal with a noisy signal, they 

proposed an approximate decomposition, as mentioned previously, by solving a quadratic 

program. Noise in both variations is assumed to be white Gaussian. 

Freeman and Adelson [53] proposed the concept of steerable filters and applied it to 

several problems. With a set of "basis filters", one can adaptively steer a filter along any 

orientation. Hilbert transform pairs were constructed to find a local "oriented energy" 

measure. Noise was then reduced by performing a soft threshold function [54] on a pyramid 

of multiscale coefficients. 

It is well known that linear phase filters are important in image coding [55]. There 

exists no real orthogonal compactly supported wavelet bases in which a scaling function <f> 

has linear phase, except for the Haar basis [31, 39]. Complex Daubechies wavelets were 

first developed by Lawton [47] and Lina and Marrand [49, 48] to achieve the linear phase 

property. Lina et ah proposed a sharping algorithm for image enhancement based on 

complex Daubechies wavelets analysis. 
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Figure 23: Block diagram of "algorithme a trous": (a) decomposition; (b) reconstruction. 

Complex Daubechies Wavelets Approaches 

In order to obtain linear phase, we can relax the orthogonality requirement and use 

biorthogonal bases, or give up compactly supported bases to get infinite impulse response 

(IIR) filters. Also, we may choose to drop the real valued filter requirement and obtain 

complex valued linear phase FIR filters. We found that complex Daubechies wavelets have 

some interesting properties which may be useful for the analysis of mammographic 

features, such as dual representation - local extrema and zero-crossings. We have used 

these characteristics in our denoising algorithm. 

As we mentioned previously, for compactly supported orthonormal wavelet bases, we 

may decompose and reconstruct an image via a fast wavelet transform algorithm [56]. 

However, this transform is not shift-invariant, which is a problem in mammographic 

analysis. In order to accomplish shift-invariance, we needed to find an equivalent structure 

without downsampling. We used the structure shown in Figure 23 to implement the 

transformation. Compared to Figure 21, every filter / and downsampling (upsampling) 

operation is replaced by a new filter Dl f'. D{ f is obtained by inserting T - 1 zeros between 

every pair of the coefficients of /. That is, 

[D'fln = 
u if    n = 2'm, 

otherwise, 

where m and n are lengths of the original filter and filters at i-th. level, respectively. This 

approach is called "algorithme a trous" (algorithm with holes) [27, 57]. The 

decomposition and reconstruction equations at level i are as follows. 
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Figure 24: (a) Test signal, (b) Four levels of waveform basis. 

Decomposition: 

si+1   =   (Dih*)*si 

wi+1    =    (Dig*)*si 

Reconstruction: 

s* = (Dlh) * st+1 + (Dlg) * w i+l 

(68) 

(69) 

(70) 

where "*" indicates discrete convolution. 

One-dimensional case 

Edges are important for detecting mammographic features. In this study, we considered 

two kinds of features: steps (including low to high and high to low) and pulses, which are 

shown in Figure 24(a). Real components of four levels of wavelets coefficients were also 

shown in Figure 24(b). Basically, each level had two types of waveforms. (Actually, there 

are four kinds of waveforms. Two waveforms form a pair and each pair is opposite of each 

other.) The waveforms among distinct levels have similar shapes, except for dilations. We 

saved the waveforms in the fourth level and normalized them as a basis. Since these 

waveforms are symmetric or antisymmetric, we only needed to save half of the samples. 

We can decompose a signal into several levels of wavelet coefficients using complex 

Daubechies wavelets. The filter coefficients that we used are shown in Table 2.4.3 for 

J = 6. Because the filters are complex, the coefficients in each level contain two parts: real 

and imaginary components. According to our experiments, four levels of wavelet 

coefficients were enough for analysis. If we decomposed further, some of the features were 

smoothed and disappeared. 

We started the analysis from the third level. Real components were considered first. 

The coefficients were thresholded and local extrema were identified. The features of a 
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Figure 25: Four levels of wavelet coefficients for a noisy input sample: (a) real components; 

(b) imaginary components. 
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Figure 26: Four levels of denoised wavelet coefficients: (a) real components; (b) imaginary 

components. 

signal should propagate across scales. Extrema in the third level were compared with those 

in the fourth level. We kept the extrema that also appeared at the fourth level. Extrema 

that did not show up at the fourth level were considered as false peaks and removed. 

Because the lengths of the basis were long, four simple 3-tap masks, {-1.0, 3.0, -1.0}, 

{-0.1, 2.5, -2.5}, {1.0, -3.0, 1.0}, and {0.1, -2.5, 2.5}, were used to classify the waveforms. 

These four masks are the simplified forms of the basis shown in Figure 24(b) and were used 

to identify the waveform type. At the third level, we simply aligned the center of the mask 

with the extrema and the other two of the masks with the eighth neighbors of the extreme. 

These were then multiplied and summed. The mask which had a maximum value was used 

to decide the waveform type of a feature. 

Since we classified the waveform type, we traced backwards to the first two levels and 

find the positions of extrema. A feature will propagate across different scales with the same 
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Figure 27: (a) Noisy dc components, (b) Denoised dc components. 

waveform type. We kept the best match at the first two levels. Then we replaced real 

wavelet coefficients in four levels with corresponding idealized waveform basis proportional 

to the magnitudes of the extrema. Because the basis were fitted for the fourth level, we 

downsample by two to obtain the basis for the other levels. Imaginary components of the 

corresponding periods were preserved. The reasons are as follows: the energy in the 

imaginary part of the coefficients is significantly smaller than that in the real part, and 

coefficients of a noisy signal are similar to those without noise. Four levels of wavelet 

coefficients for noisy input are shown in Figure 25, and the denoised versions are shown in 

Figure 26. 

Next, we focus on the DC component. This component is obtained from passing an 

input through several lowpass filters, and is very smooth. We already know that the real 

part and imaginary part of a scaling function is close to the first derivative and the second 

derivative of Gaussian, respectively. We first locate regions within imaginary components 

that are less than some threshold and oscillate near zero. We set these regions to zero and 

replace each corresponding region of real components with its average value. Figure 27 

shows a sample noisy dc component and denoised version. Finally, we reconstructed the 

original signal with the modified coefficients. 

The algorithm is summarized as follows: 

1. Using a frame representation, we decompose a signal into several levels of complex 

wavelet coefficients. 

2. Starting from the third level, we identify the local maxima for real wavelet 

coefficients that are greater than some threshold. 

3. Selected coefficients are compared with the fourth level to remove unwanted maxima 
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and classify each waveform type. 

4. Trace backward to the first two levels to find the positions of maxima. 

5. Replace real wavelet coefficients with corresponding idealized waveform basis and 

preserve imaginary components. 

6. Locate regions within the imaginary component of DC channel that are less than 

some threshold and oscillate near zero. 

7. The real part of each corresponding region is replaced with its average value. 

8. Reconstruct original signal using modified coefficients. 

Two-dimensional case 
The two-dimensional case is easily extended from the one-dimensional case by tensor 

product construction. In order to reduce computational cost, we used a method proposed 

by Mallat et al. [13] to find features along the x-axis and y-axis, respectively. Let the 

scaling function <f>(x) be expressed by 

+ 0O 

b{u) = e'isüJ I] H(2~pLü), (71) 
P=i 

where H(u) is the Fourier transform of a lowpass filter h(n) and s is the sampling shift. 

This implies that 

4(2w) = e-is"H(w)]>(u}). (72) 

A wavelet ^(x) whose Fourier transform V>(cu) can be defined in the same way: 

^(2u>) = e-iauG(w)i(u), (73) 

where G(u) is the Fourier transform of a highpass filter g(n). The two wavelets ^(x,y) 

and ip2(x,y) are separable, and are defined as 

^(x,y) = 2^(x)<j>(2y), (74) 

if>2{x,y) = 2<f>(2x)<j>{y). (75) 

The Fourier transform of these two wavelets are then given by 

^(2oox, 2ooy) = e-^GK)|K)j(ws), (76) 

ft(2ux,2u>y) = e-^MGH^K). (77) 
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The two-dimensional wavelet transform of f(x,y) can be expressed as the set of functions 

Wf=(Wkf(x,y),Wlf(x,y)), (78) 

where j € Z. We now find two reconstructing functions xl{x->v) an<i X2(x,y) sucn tnat 

f(x,y) can be reconstructed from its wavelet transform 

+00 

/(*,y) = Y, (Kf*xh(*,v) + wlf*xU*>v))- (79) 
i=-oo 

In order to obtain perfect reconstruction, the Fourier transforms of x1^,?/) and x2{x-,y) 

must satisfy 

+00 

J2 (V^(2^,Vuy)xL(VL>x,Vuiy) + V2(2J^,Vujy)x
2(2jLüx,2>u>y)) = 1. (80) 

j=-oo 

Let x1^,^) and x2(ux,uy) be defined such that 

£(2ux, 2uy) = eis"*K(iox)L(ujy)j>M4(uy) (81) 

i*(2ux, 2uy) = eiau»K(uy)L(u,x)i{ux)i(uy), (82) 

where K(u>) and L(u;) are 2TT periodic functions and they have to satisfy 

G(Lü)K(Lü) + \H(U;)\
2
 = 1, (83) 

,M = UM!. (84) 

In our algorithm, f(n) and g(n) are lowpass and highpass filters, respectively. We 

choose k(n) equals to g*(n) to meet the first criterion. Next we need to generate a filter 

l(n) which will satisfy the second criterion. In Mallat's original derivation, he developed his 

algorithm based on a continuous wavelet transform. We approximate his derivation with a 

discrete formulation. 
The support of the lowpass filter (used for decomposition) was 14 taps. In order to 

increase the resolution in the frequency domain, we needed to interpolate between the 

original samples. This was done by padding zeros in filter f(n), and then computing its 

Fourier transform. Because this filter was not symmetric with respect to the origin, we 

compensated with a \ sample phase shift. The final filters used in the study are shown in 

Table 2.4.3. 

2.4.4    Experimental Results 

To date, our algorithm has been tested on several examples. Figures 28(a) and 28(b) show 

an original signal and noisy signal, respectively. The SNR is 17.6 dB. The denoised signal 
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n 
-6 

-5 
-4 

-3 
-2 

-1 

0 
1 
2 

3 
4 
5 
6 
7 

h(n) 

Real 

-0.003384 

-0.000295 
0.022730 
-0.009154 

-0.084726 

0.094778 

0.480049 

0.480049 

0.094778 
-0.084726 
-0.009154 

0.022730 
-0.000295 
-0.003384 

Imaginary 

-0.001523 

0.000655 
0.019115 
0.024154 

-0.019306 

-0.035922 

0.012827 

0.012827 
-0.035922 

-0.019306 
0.024154 

0.019115 
0.000655 
-0.001523 

Real 
g(n) 

0.003384 

-0.000295 
-0.022730 
-0.009154 

0.084726 

0.094778 

-0.480049 

0.480049 

-0.094778 
-0.084726 
0.009154 

0.022730 
0.000295 
-0.003384 

Imaginary 

-0.001523 

-0.000655 
0.019115 
-0.024154 

-0.019306 
0.035922 

0.012827 

-0.012827 
-0.035922 

0.019306 
0.024154 
-0.019115 
0.000655 
0.001523 

Real 
n) 
Imaginary 

-0.003384 

0.000295 
0.022730 
0.009154 

-0.084726 

-0.094778 

0.480049 

-0.480049 
0.094778 

0.084726 
-0.009154 

-0.022730 
-0.000295 
0.003384 

-0.001523 

-0.000655 
0.019115 
-0.024154 
-0.019306 

0.035922 

0.012827 

-0.012827 
-0.035922 

0.019306 
0.024154 

-0.019115 
0.000655 
0.001523 

l(n) 

n Real Imaginary 

0 0.744441 -0.009214 

1 0.152932 0.010146 

2 0.003917 0.025936 

3 -0.038336 0.001404 

4 -0.002509 -0.022426 

5 0.013544 -0.014009 

6 0.002328 0.001338 

7 -0.003416 0.002981 

8 -0.001008 -0.000301 

9 0.000320 -0.000616 

10 0.000049 0.000059 

11 -0.000048 0.000099 

12 0.000002 0.000002 

13 0.000005 -0.000005 

l(-n) = l(n), n = 1, 13. 

Table 4: Coefficients of h(n), g(n), k(n), and l(n). 
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Figure 28: Square waveforms: (a) original signal; (b) noisy signal; (c) denoised signal. 
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Figure 29: (a) Noisy signal, (b) Denoised signal. 
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Figure 30: (a) Original RMI phantom image of mammographic mass, (b) Denoised image. 
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is shown in Figure 29(c). The new SNR is 30.8 dB. Figures 29(a) and 29(b) show an 

arbitrary cross section of the RMI phantom image containing a mass. We successfully 

preserved the mass while reducing noise. A two-dimensional example is shown in Figure 

30(a) which shows the original phantom image. It is difficult to see the mass in this image. 

However, after denoising, we clearly see two masses on the upper left and lower right 

corners of the image as shown in Figure 30(b). 

2.4.5    Summary 

Linear phase filters are very important for mammographic image processing. Such filters 

enable control over phase shifts during processing. By virtue of symmetry (antisymmetry), 

complex Daubechies wavelets were designed to serve this advantage in analysis. 

In this study, we proposed a denoising algorithm based on complex Daubechies 

wavelets. This algorithm aimed at removing noise while preserving features. We designed 

an easy method to classify waveform types and replaced the wavelet coefficients of features 

with "ideal" waveform basis. The dc components were also modified using the unique 

properties of complex Daubechies wavelets. Our approach differs from previous methods 

including Mallat's [24, 13] which used local extrema and reconstructed a denoised signal 

via alternative convex projection iteratively. Despite high redundancy of frame 

representation, our algorithm was implemented efficiently. 

2.5    Segmentation of Masses Using a Continuous Scale 
Representation 

2.5.1    Introduction 

In this chapter of the report, we describe a wavelet transform where a continuous scale 

analysis is carried out through discretization and adaptively finds the scale at which a 

signal (mass) is best represented. 

Edges are an important feature for analyzing the properties of images. Psychophysical 

experiments suggest that the human visual cortex functions as a population of feature 

detectors tuned to edges and bars of various widths and orientations [58]. It has also been 

shown that visual information is processed in parallel by a number of 

spatial-frequency-tuned channels [59]. 

Based on such physiological findings, Marr [60] developed an edge detection scheme 

based on multiscale analysis using a Laplacian of Gaussian filter. Shortly afterward, 

Witkin [61] decomposed a signal into a tree representation in terms of extrema of the signal 

or its derivatives. This representation was obtained by scale-space filtering and it is 
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complete under certain assumptions. 

In our study, we have focused on multiscale wavelet analysis. The wavelet kernel is 

predominantly localized in a certain region of the space-frequency plane. What 

distinguishes a wavelet transform from a short-time Fourier transform is that a wavelet 

may have a larger spatial window for low frequency analysis and a smaller spatial window 

for high frequency analysis. This property enables us to zoom in on sharp variations and 

design multiscale image processing algorithms tuned for digital mammography. Mallat first 

developed a recursive algorithm to decompose an image into dyadic scales and reconstruct 

an original image from its scale space representations [56]. He argued that when using a 

Gaussian as a smoothing function, detecting the zero-crossings of a wavelet transform is 

equivalent to a Marr-Hildreth edge detector [60]. 

A dyadic wavelet analysis provides a complete non-redundant representation [56]. 

However, here we suggest that for the analysis of digital mammograms, it is desirable to 

carry out analysis across arbitrary scales, especially, when a certain mammographic feature 

lies between two dyadic scales. Unser and Aldroubi recently proposed a way to calculate an 

arbitrary integer scale wavelet transform using B-splines to approximate a wavelet [62]. In 

this report, we derive a scheme to calculate the wavelet transform of a discrete signal at an 

arbitrary scale. 

Although wavelet transforms have proven to be a powerful tool for the enhancement of 

digital mammography [9], little is known about choosing the optimal set of parameters for 

a specific algorithm [63]. For enhancement of digital mammography, one must choose a 

scale, threshold value, and gain factor in order to target a specific feature [64]. To optimize 

a wavelet algorithm, one has to systematically investigate the effect of the level, gain, and 

threshold [64]. In addition, a distinct set of optimal parameters may be necessary for each 

digital radiograph. 

Many image processing and computer vision algorithms are surprisingly fragile when it 

comes to choosing various parameters and thresholds. There have been no good solutions 

to setting the proper value of the scale parameter in regularization networks. Local 

adaptation is needed in these networks to make them less brittle. Using an assumption of 

zero-mean, additive Gaussian noise, it can be shown that the scale parameter for edge 

detection problems should be set to be proportional to the variance of the additive noise 

[65]. However, these assumptions are too restrictive for most purposes, including digital 

mammography. More promising methods from Bayesian analysis are under investigation for 

setting the scale and other parameters by standard regularization-based methods [66, 67]. 

The Laplacian filter is a popular edge detector in image processing. However, 

knowledge of the image feature size is necessary when choosing the proper scale for feature 

68 



detection. In addition, traditional edge detectors require a smoothing prefilter and 

choosing the proper amount of smoothing may be difficult. Compared to our previous 

work, traditional image enhancement algorithms may strengthen features within certain 

spatial scales but choosing an optimal spatial scale is not obvious. 

It is common to make some assumptions about feature characteristics. For example, we 

can assume that microcalciflcations in mammograms occur within finer scales since these 

features are characterized by small, high-contrast spots. Unfortunately, it is more difficult 

to make such general assumptions for masses in mammograms since masses may assume 

distinct shapes and sizes, e.g., spiculated, round, or irregular shapes. Thus, it is necessary 

to find a way to identify an "optimal" scale for representation of masses. Once detected, 

their regions can be marked and provide an area of local support for multiscale feature 

enhancement, including reinforcement of the "halo" effect, to assist in the visibility of 

masses. 

In this chapter, we describe a method to segment a mass from its background using a 

continuous multiscale analysis. First, a suspicious region is identified, which may or may 

not contain a lesion. Next, the region is used as a matched filter to select a wavelet basis. 

A soft threshold is then applied. If the selected region contains a feature, the 

mammographic feature is segmented from its background for further processing. 

2.5.2    Traditional Wavelet Analysis 

A wavelet transform is a linear operator that projects a signal onto a set of basis functions 

(wavelets). Each wavelet is a dilated and translated version of a mother wavelet. A mother 

wavelet is a function ip(t) G L2(R) such that 
/oo 

x/>(t)dt = 0. 
-oo 

The dilation of tp{t) by a factor a can be described by 

Mt) = -1> (-) ■ a    \aj 

The convolution operator is defined by 
/oo 

f(u)g(t - u)du. 
-oo 

The wavelet transform of a function f(t) at scale a and position b is defined as 

Waf(b) = f*i>a{t)\t=b' 

The continuous wavelet transform satisfies energy conservation and f(t) can be perfectly 

reconstructed from its wavelet transform coefficients [68]. Both scale a and position b may 
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vary continuously over the set of real numbers. At a fine scale a0, the support of the basis 

V>ao(t) is small and wavelet coefficients WaJ(b) are sensitive to detail. For a larger scale au 

the support of if>ai(t) has greater extent and wavelet coefficients WaJ(b) are more sensitive 

to slow changing information (or larger objects). 

For a particular class of wavelets, the scale parameter can be sampled on a dyadic grid 

without losing the mathematical completeness property of the transform. A dyadic wavelet 

transform of a continuous function f(t) at scale 2k and at position b is defined as [13]: 

W2kf(b) = f*^(t)\t=b. (85) 

A function f(t) can then be reconstructed from its transform coefficients alone by: 

oo oo 

f(t)=     £    W2tf*X2*{t)=     E    /*V>2**X2*(<) (86) 
k=-oo fc=-oo 

where wavelets tß(t) and x(t) satisfy the condition 

CO 

JT  *(2*U;)#(2*ü;) = 1, (87) 
k=—oo 

and $(w) and X(u) are the Fourier transforms of if?(t) and x(*)> respectively. 

The dyadic wavelet transform filters used in this report were designed analytically as 

follows. 
Similar to [13], we define a smoothing function $(w) such that [25] 

+ CO 

$(«;) = JJ H(2-pu}). (88) 
P=I 

Since n£? cos(2-^) = ^, we let [10, 25] 

+£?      ,/      üJ\       /sin(?)\2 

anc (89) 

H(u>)   =   cos2(|j. (90) 

Choosing G(cu) = (4zsin(|))2 = -16sin2(f), the wavelet *(w) can be defined simply as [25] 

Filter A'(a;) is then defined by 
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Finally, the reconstructing wavelet x(t) can be formulated as 

m = K (|) * g) . (93, 

We note that since Qiu) = (    ^* )4 is a cubic spline whose integral is equal to 1, ip(t) is a 
4 

second order derivative of a cubic spline smoothing function. For more detailed treatment 

of this class of wavelets please refer to Section 2.2 of this report. 

2.5.3    An Arbitrary Scale Algorithm for the Discrete Case 

A variation of Mallat's algorithm for discrete dyadic analysis is presented next. Mallat's 

algorithm can analyze a discrete signal x[n], of finite energy [13]. In his algorithm, the 

scaling function $(u;) must satisfy the constraint 

+ 0O 

Vu; G R,      0 < Ci <   ^   !$(<*> + 2mr)\2 < C2 where C\ and C2 are constants.   (94) 
n=—oo 

Marr [60] claimed also that there exists some function f(t) G L2(R) (not unique) such that 

[13] L      ' yoo 
Vn G Z,      Sif(n) = /     f{t)</>(t - n)dt = x[n]. (95) 

J—oo 

At each scale 2j, we may decompose SdJ[k] into S^+i/M = bjik and W2
d
J+1/[&] = cjifc [13]. 

The decomposition algorithm is: 

j = 0 

while   (j < J) 

Wd
3+J = SdJ*G3 

j = j + 1 

end of while, 

where Hp(u) = H(2pu) and GP(LO) = G(2pu). The reconstruction algorithm is: 

3 = J 
while   (j > 0) 

Sd
2J-J = WdJ * Kj-t + Sd

vf * Hi-x 

j = j - 1 

end of while, 

where Kp(u) = K(2pu). 
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In frequency domain, this can be formulated as: 

SdJ   =   FH$H (96) 

W$+1f   =   SbfGfiu) (97) 

Si+if   =   Sd
2JfH(2^) 

=   SUf H(2^u)H(2ju;) 

=   F{u)${u)i[H{Vu>) 
i=0 

=   F(u;)$(2iu)n#(2V) 
i-i 

=   F{u;)<S>{2j+1uj) (98) 

Wi+1f   =   F(OJ)^LO)G(2^) 

=   F(uj)^(2j+1Lo) 

=   Sif*^± (M) 1J      $(w) 

Therefore, the wavelet transform of a discrete signal a;[rc] is, 

FFT{DWT{x[n],2j,k}} = W£+i/ = X(w) 0(2^), (100) 

where the frequency response of the analysis filter 0(u>) is 

0(2M = »Ö. (101) 

Notice that in the algorithm above, filters at scale 2J are obtained by putting 2J_1 - 1 

zeros between consecutive coefficients of filters at level 1. However, this introduces 

undesirable high frequency components into the analysis filter 0(UJ) as shown in Figure 

31(a). Thus, a modification was introduced as shown in Figure 31(b). By including an 

ideal lowpass filter with cutoff frequency 7r/2J_1, a mathematically perfect reconstruction is 

sacrified to obtain superior frequency performance as shown in Figure 31(c). We can show 

that perfect reconstruction is almost achievable with respect to contrast resolution 

currently provided by digital mammography. When using the wavelet defined previously, 

the corresponding analysis filter for our algorithm becomes 

mm{Z      ^J-jo when |w + 2Ä;7r|>21-%. V      J 
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Figure 31: (a) The frequency bands for standard analysis, (b) Block diagram of our modified 
algorithm (3 levels shown), (c) The frequency response for the subbands of our algorithm. 
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If i{>(t) satisfies the admissibility condition, #(o>) = 0 when w = 0. Thus *m(w) = 0 when 

to = 0. And so we can define 

0(2*0;) = 
M2i+1 ") 

$(o>) 
(103) 

This analysis filter and its frequency response are comparable to our original analysis 

filters as shown in Figure 32. Our filter appears more smooth, which is desirable for image 

10 20 30 40 
(d) spatial 

Figure 32: (a) Standard analysis filter's frequency response at level 3. (b) Our analysis 
filter's frequency response at level 3. (c) Second derivative wavelet at level 3. (d) Our new 

wavelet at level 3. 

analysis. In addition, the ripples caused by the ideal low pass filter are very subtle. Our 

new algorithm also enables us to zoom in-between octave levels and trace a particular 

feature in a mammogram. Let us now define 

#m(2au;) = 
$(2au>)   when |w + 2kw\ < 2n/a, 
0 when \LO + 2kn\ > 27r/a, 

(104) 

anc 

D(auj) = 
$(w)    : 

where a > 2 or a = 1, when a = 2J, D(aLo) = 0(2
J
Lü) as shown in Figure 33. 

(105) 

2.5.4    Locating the Best Scale 

In the previous section we showed how wavelet coefficients can be calculated at an arbitrary 

scale. We next discuss a method for determining an appropriate scale based on local 

feature sizes within an image. Using the image as a matched filter, finite number of scales 

are searched to find the wavelet coefficients that most resemble the features of interest. 
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daEhdot line: a-6.6667 

dashed line: level-3 

Figure 33: Capability to zoom in between 2 levels. 
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Figure 34:  (a) The best scale to detect a bump in a simulated mass profile,  (b) The best 
scale to detect a bump in a noisy image profile. 
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This method is demostrated in Figure 34. The left-hand side of Figure 34(a) shows 

three scales of an image profile, containing bumps of distinct width. We calculated the 

wavelet transform for each image. At each scale, the maximum of wavelet coefficients 

across the shifting parameter was found. The relation between scale and the wavelet 

maximum is shown on the right-hand side of Figure 34(a). Note that there is exactly one 

scale a* corresponding to the maximum of wavelet coefficients across both shifting and 

scale parameters. The value a* is clearly a function of the size of the feature within the 

cropped region. 

Figure 34(b) shows an image profile corrupted with random noise. Our method is still 

able to identify candidates for the best scale in the presence of severe noise. 

2.5.5    Application of the Segmentation Algorithm 

X-ray images of an RMI model 156 phantom (Radiation Measurements Inc., Middleton, 

WI) were investigated. The RMI phantom contains five masses and six fibrils which mimic 

two objects of interest in mammography. The radiographic image quality of this phantom, 

as well as the total number of objects which are deemed to be visible, form a key 

component of the mammography accreditation program administered by the American 

College of Radiology (ACR). The RMI phantom is designed so that at least one object in 

each category is not visible and one object is at the borderline of the visibility threshold 

[69]. 

An X-ray image of the RMI phantom is ideal for studying image segmentation since it 

has well defined features of clinical interest which are present both above and below the 

threshold for visibility. Figure 35(a) shows a schematic representation of the insert in the 

RMI. For imaging purposes, this insert is placed in block of acrylic designed to simulate an 

average compressed breast. Figure 35(b) shows an example of the corresponding 

radiographic image obtained with a conventional mammography unit as used for ACR 

accreditation. 

We suggest that traditional multiscale analysis carried out at dyadic scales is flawed in 

the sense of best representation and sensitivity. To demonstrate graphically the flaw of 

processing at dyadic scales alone we present the following seqence of images, obtained by 

processing a digital radiograph of the RMI phantom (shown in Figure 35) containing three 

masses (small, medium, and large). Figure 36(a) shows regions obtained by the 

zero-crossings of wavelet coefficients extracted from the dyadic scale five. Note that the 

bounded regions corresponding to the large and medium masses are quite deformed and 

there are many small "false positives" detected at this level of analysis. However, at the 

next dyadic scale (level six) shown in Figure 36(b), the boundaries of the small and large 
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Figure 35: RMI phantom: (a) internal schematic; (b) digital radiograph. 
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Visibility on x-ray image 

Easy (E) 
Borderline (B) 

Invisible (I) 

Feature 

Mass thickness/ diameter 

750 [im I 6 mm 
500 [im I 5 mm 

250 /mi / 3 mm 

Fibril (nylon fiber diameter) 

750 [im 

540 [im 

400 [im 

Table 5: Characteristics of masses and fibrils investigated. 

masses are merged with an adjacent L-shaped border detected within the phantom. 

Thus, a better representation may live (exist) in between the two dyadic scales, level 

five (which proved to be too fine an analysis) and six (too coarse an analysis). Indeed, this 

is exactly what we find. Figure 37(a) shows the regions corresponding to zero-crossings 

extracted at a scale inbetween levels five and six. Note the shape of each of the three 

masses are distinct and well defined. Figure 37(b), shows the three masses detected by 

applying simple geometric constraints to each labelled segmented region within the "best" 

level of analysis. The one false positive present is most likely due to the lack of 

sophisitication of our present (simple) algorithm. 

Figure 35(a) shows that the phantom also contains objects which simulate 

microcalcifications, however this study focused on fibrils and masses. Table 5 summarizes 

the key parameters of the masses and fibrils that were investigated. Identification of each 

object is by category of fibril (F) or mass (M) and by its visibility of easy (E), borderline 

(B), or invisible (I). 

Radiographic images of the RMI phantom were obtained using a Digital Spot 

Mammography (DSM) system attached to a Lorad Breast Biopsy System (Lorad 

Corporation, Danbury, CT). The detector area was 50 mm by 50 mm which is smaller than 

the RMI phantom size shown in Figure 35. As a result, only 20 % was able to be captured 

in any single digital image. The DSM image matrix size used in this study was 512 by 512 

so that the nominal pixel size was 100 [im. Separate images were obtained of mass and 

fibril regions of the phantom. For the mass region, technique factors of 22 kVp and 16 mAs 

were used, whereas for the fibril region, 22 kVp and 80 mAs were used. Additional images 

were also acquired at 32 kVp and 200 mAs, where the increased radiation reduced the 

noise and permitted the B/I masses and fibrils to become visible. By this process, the 

locations of the invisible and borderline masses in test images (standard radiation dose) 

were established with a high level of accuracy. 

The acquired image data set was transferred to a SUN workstation (Mountain View, 

Ca.) for subsequent analysis and display. A 256 by 256 pixel region of interest 

incorporating the E and B masses was extracted for subsequent processing whereas for the 

invisible mass, a cropped region of 183 by 183 was used. For the fibrils, the selected region 
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Figure 36: (a) Blobs detected from dyadic wavelet coefficients at level 5, (b) Blobs detected 
from dyadic wavelet coefficients at level 6. 
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(b) 

Figure 37: (a) Suspicious regions detected for wavelet coefficients at scale 28.5. (b) Suspi- 
cious region identified as possible masses providing local support for enhancement of wavelet 

coefficients. 
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was 128 by 128 pixels. The choice of these regions was determined by the need to eliminate 

all extraneous objects for this part of the image processing exercise. For comparison 

purposes, a uniform background of 200 by 200 pixels containing no objects was also 

investigated, and categorized as none (N) below. 

Segmentation - Mass 

Figure 38 shows representative images of the cropped regions corresponding to three 

masses (E, B and I) as well as a background region with no objects (N). These images were 

generated using 22 kVp and 16 mAs. Also shown are the same four images after histogram 

equalization and unsharp masking enhancement. As expected, the processed images in 

Figure 35 shows negligible improvement in overall mass visibility using either of these two 

common image enhancement techniques. 

Figure 39 shows the segmentation results obtained for an easily visible mass, M-E. A 

profile through the center of M-E is depicted in Figure 39(a), and the corresponding profile 

of the wavelet coefficients is shown in Figure 40(b). It is the interscale value, a = 48, which 

best defines the wavelet coefficient profile and therefore best segments the mass (see Figure 

39(d)). 

Figure 41 shows the segmentation results obtained for a mass with borderline visibility, 

M - B. A profile through the center of M - B is depicted in Figure 42(a), and the 

corresponding profile of the wavelet coefficient is shown in Figure 42(b). Note that the 

interscale value a = 28 best defines the wavelet coefficient profile and therefore best 

segments the mass (see Figure 41(e)). The segmentation algorithm clearly defined this 

mass. 

Figure 43 shows the segmentation results obtain for the invisible mass, M - I. A profile 

through the center of M - I is depicted in Figure 44(a), and the corresponding profile of 

the wavelet coefficients is shown in Figure 44(b). Here the interscale value a = 28 again 

best defines the wavelet coefficient profile and therefore best segments the mass (see Figure 

43(e)). It is clear that the segmentation algorithm developed in this work was capable of 

finding the mass which is normally invisible on standard radiographs of this phantom. 

Figure 45 shows the results obtained when processing the background region with no 

object in the field of view. 

Segmentation - Fibrils 

Figure 47 shows representative images of the cropped regions corresponding to three 

fibrils (E, B, and I). As in the case of masses, these images were generated using 34 kVp 

(22 is preferred) and 56 mAs (16 mAs is preferred). Also shown are these same images 
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Figure 38: Different processing methods, window and leveling (W/L), histogram equalization 
(HE), unsharp masking (UM), (a) The easy case, (b) The borderline case, (c) The invisible 

case. 
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ö 

(b) L=5 (a=16) 

a) original 

(c) L=6 (a=32) (d) L=7 (a=64) 

Figure 39: Mass (large) and its edges: (a) original image; (b)-(d) dyadic scales; (e) edges at 

best scale. 
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Profile of a mass (large) 
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Figure 40: Profiles of the large mass and its wavelet coefficients. 
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Figure 41: Mass (medium) and its edges: (a) original image; (b)-(d) dyadic scales; (e) edges 

at best scale. 
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Profile of a mass (medium) 

Profile of wcoeff 

dashdot,L=6 (a=32) 
solid,a=28 
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Figure 42: Profiles of the medium mass and its wavelet coefficients. 
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Figure 43: Mass (small) and its edges:  (a) original image; (b)-(d) dyadic scales; (e) edges 
at best scale. 
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Figure 44: Profiles of the small mass and its wavelet coefficients. 
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(a) original 

(b) L=5 (a=16) (c) L=6 (a=32) (d) L=7 (a=64) 

(e) a=28 

Figure 45: Randomly chosen region and its edges: (a) original image; (b)-(d) dyadic scales; 
(e) edges detected at best scale. 
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Figure 46: Profiles of the small mass and its wavelet coefficients. 
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using histogram equalization as well as an unsharp masking enhancement. The processed 

images in Figure 47 show that little improvement in overall fibril visibility is achieved using 

either of these three standard image enhancement techniques. 

Figure 48 shows the segmentation results obtained for an easily visible fibril, F-E. A 

profile through the center of F-E is depicted in Figure 49(a), and the corresponding profile 

of wavelet coefficients is shown in Figure 49(b). It is the interscale value a = 7.5 which best 

defines the wavelet coefficient profile and therefore best segments the shape of the fibril 

(see Figure 48(a)). 

Figure 50 shows the segmentation results obtained for fibril with borderline visibility, 

F-B. A profile through the center of F-B is depicted in Figure 51(a), and the corresponding 

profile of the wavelet coefficients is shown in Figure 51(b). The interscale value a = 10 best 

defined the wavelet coefficient profile and therefore best captured the fibril (see Figure 

50(e)). The segmentation algorithm clearly defined this fibril. 

Figure 52 shows the segmentation results obtained for a fibril that is invisible, F-I. A 

profile through the center of F-I is depicted in Figure 53(a), and the corresponding profile 

of the wavelet coefficients is shown in Figure 53(b). It is an interscale value which best 

defines the wavelet coefficient profile and therefore best captures the fibril (see Figure 

52(a)). The segmentation algorithm clearly defined this subtle fibril. 

2.5.6    Summary 

We have shown that regions corresponding to masses can be identified reliably through 

frame representations of a continuous multiscale analysis. We showed that subtle features 

characteristic of mammographic findings required a finer parameterization of scale space 

than provided by traditional methods of wavelet analysis. 

Basis functions for carrying out continuous multiscale analysis were designed to be 

symmetric and have zero-phase providing closed contours (via zero-crossings) of emergent 

features within each level of scale. 

Spatial locality was preserved via a frame representation enabling segmentation of 

masses and adaptive contrast enhancement. We suggest that masses located in dense and 

somewhat dense mammograms can be reliably characterized and identified by applying 

geometric constraints (size and shape) to the set of segmented regions. 
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Figure 47: Different processing methods, window and leveling (W/L), Histogram equalization 
(HE), unsharp masking (UM), (a) The easy case, (b) The borderline case, (c) The invisible 
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case. 

92 



(b) L=3 (a=4) 

_ T     -    - 

(a) original 

(c) L=4 (a=8) (d) L=5 (a=16) 

e   a=7.5 

Figure 48: Fibril (E-easy) and its edges: (a) original image; (b)-(d) dyadic scales; (e) edges 

at best scale. 
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Profile of a fibril (easy a) 
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Figure 49: Profiles of the fibril and its wavelet coefficients. 
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(b) L=3 (a=4) 

WmWSm 

(a) original 

(c) L=4 (a= (d) L=5 (a=16 ) 
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Figure 50: Fibril (B-borderline) and its edges: (a) original image; (b)-(d) dyadic scales; (e) 

edges at best scale. 

95 
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Figure 51: Profiles of the fibril and its wavelet coefficients. 
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(a) original 
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(b) L=3 (a=4) (c) L=4 (a=8) (d) L=5 (a=16) 

(e) a=10 

Figure 52:   Fibril (I-invisible) and its edges:   (a) original image; (b)-(d) dyadic scales; (e) 

edges at best scale. 
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Profile of a fibril (hard b) 
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Figure 53: Profiles of the fibril and its wavelet coefficients. 
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2.6    Enhancement of Computer Simulated Masses for 
Mammography Using Wavelet Analysis 

2.6.1 Introduction 

In this section we report results on the application of enhancement by hard thresholding. 

We present: 

• mathematical details of modeling of image formation, 

• details of hard thresholding method, and 

• methods (mathematical and psychophysical) for evaluation of the enhancement 

technique. 

In section 2.6.3 we present the enhancement evaluation methods. In section 2.6.4 we 

demonstrate results of our experimentation with the hard thresholding technique and in 

section 2.6.5 we present conclusions and future directions. 

2.6.2 Methodology 

Phantoms Simulated by Mathematical Construction 

The phantom used in this study was designed to replicate circularly shaped masses in a 

uniform noisy background. 

1. Image: For computational purposes, a512 by 512 matrix containing a number of 

simulated masses was used. There were 8 bits per pixel corresponding to 256 grey 

levels. The phantom was divided into 25 squares (a 5 by 5 grid). The size of each 

square was 100 by 100 pixels. Thirteen of these squares were chosen randomly to 

contain a simulated mass while the remaining twelve contained only noise. 

2. The masses: Each mass was modelled as a circle with a radius equal to r. The center 

of the mass coincided with the center of the square. The signal intensity of the mass 

was computed by: 

I(x,y) = a^(r2-x2-y2) (106) 

where x and y were the coordinates with respect to a local coordinate system (point 

of origin for the local coordinate system was the geometrical center of the mass). The 

parameter a controls the local contrast and r controls the size of the simulated mass 

(r is the radius of the mass). The background had a grey level of value 128. 
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PSF vs normalized distance 

0.5 1 
normalized distance r/ds 

1.5 

Figure 54:   A plot of the Point Spread Function (PSF) as a function of the normalized 

distance d/rs. 

3. Noise and blurring: In mammography, the dominant source of image noise is 

quantum mottle and for this simulation, a 10mR exposure level at the detector was 

used with an average photon energy of 20 keV. A 42 (im pixel size was used since 

this corresponds to a 4k x 6k matrix size for a conventional 25 cm x 30 cm 

mammogram [70]. As a result the mean number of photons per pixel should be a 

1000 which corresponds to a standard deviation in the noise level of 3% [71]). The 

limiting resolution in screen-film mammography is in the range 15 to 20 line pairs per 

mm [72]. The computer simulated phantom was convolved with a smoothing function 

to simulate a reduced modulation transfer function. A screen thickness of 80 (im was 

assumed and a two dimensional Point Spread Function (PSF) generated using an 

expression derived by Barrett and Swindell [73]. A plot of the Point Spread Function 

used in our simulations as a function of the normalized distance r/ds, is presented in 

Figure 54. 

Figure 55 (a) shows one of twenty-five squares that was cropped from a simulated 

phantom. The size of the square is 100 by 100 pixels. This square contains, located at its 

center, a mass of radius of 20 pixels and it is corrupted with zero mean Gaussian noise of 

standard deviation of 15. Figures 55 (b) and 55 (c) show two phantoms of the same size 

with only a mass and only noise. Figures 56 (a), 56 (b) and 56 (c) show three profiles 

chosen from the Figure 55 (a). Finally, Figure 57 shows a typical simulated phantom 

containing thirteen masses. 
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Figure 55: (a) A square containing a mass at its center and corrupted with Gaussian noise; 
(b) the same square containing only signal; (c) the same square containing only noise. 
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Figure 56: Three profiles of the square shown in Figure 55. For strips indicated as scanlines 

(a), (b) and (c) respectively. 
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Figure 57: A typical mathematical phantom used in our study. The size of the phantom 
was 512 by 512 pixels. The phantom contained 13 masses and was corrupted with random 

Gaussian noise. 
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Function used for the thresholding of tha wavelet coefficients 

Figure 58: A plot of the piecewise linear function of the wavelet output f(w) as a function 

of the input w of the wavelet coefficients. 

Image Enhancement 

Thresholding of the wavelet coefficients for the purpose of denoising is a popular theme 

in current literature. In this work we investigated the use of hard thresholding for the 

denoising of the simulated phantoms. In this method for each decomposition level i a 

threshold value U was selected and all the coefficients below that level were set to zero. 

The rest remained unaltered. Mathematically this can be expressed as follows: 

Vi,i = 
0       for t? < witi < tp, 
wi, otherwise, 

(107) 

where w^ is the /-th wavelet coefficient of the i-th level t? and tp are the positive and 

negative thresholds respectively for decomposition level i. Figure 58 shows schematically 

the thresholding strategy. The choice of the thresholds i* and tP was based on the 

percentage of the wavelet coefficients that remain unaltered after the thresholding. In other 

words if we set the threshold at 20 %, t? and tp{ were chosen in such a way as to leave 80 % 

of the negative wavelet coefficients and 80 % percent of the positive wavelet coefficients 

unaltered. The equality: 

tP = -t? (108) 

does not necessarily hold since the histogram of the coefficients for all levels is not 

symmetric with respect to the y = 0 axis. Figures 59(a)-(f) show the histograms of wavelet 

coefficients of the six decomposition levels for the phantom of Figure 57. The vertical lines 

denote the thresholds for the percentages 0 %, 10 %, ..., 100 %. 

After performing the inverse transform the resulting image was window leveled for 

better visualization and contrast. 
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Figure 59:   (a)-(f) Histograms of the wavelet coefficients of a phantom.  The vertical lines 
indicate the thresholds from 0 % (thick line) to 100%. 
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Figure 60: An image / is defined in the rectangular domain D. A mass m is denned in the 
domain Dm (white region). The area surrounding the domain Dm, D - Dm, is used for the 

calculation of the background B (black region). 

2.6.3    Evaluation of Enhancement 

In this Section we describe our methodology for quantitative and qualitative evaluation. A 

discussion of the relation between the Enhancement Factor EF, and the performance of an 

observer has been presented in a previous publication [63]. 

Enhancement Factor 

The mean signal contrast, C, in each simulated mass was defined as: 

C = h™ SdA - fp-D™ SdA (109) 
fDm dA Sü-Dm dA 

where S is the original signal and dA is the area differential. Dm is the area where the 

signal (mass) resides, D - Dm is the area that surrounds the mass and D is the area of the 

square. For the calculation of C we used the following formula [74]: 

^7 = lf 3 ^1 ^ (110) 
13 AfWr2      1002-7rr27 

where Sj is the gross count in the j'-th square in the area where the signal resided (Dm) 

and Bj was the gross count in the same square where the Sj was calculated but for the 

area that surrounds the simulated mass (see Figure 60). Equation 110 is a discretized 

version of Equation 109. The summation considers the blocks that contain a mass. 

An estimation of the noise N, in the image is provided by the following formula: 

TV 
11 3 = 1 
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where er,- is the standard deviation in the square where no signal resides. The summation 

for that case considers the blocks that contain only noise. 

These definitions for contrast and noise were used to obtain the input contrast to noise 

ratio (CNRi) and the corresponding value of the output contrast to noise ratio (CNR0) in 

the processed image. The resultant enhancement factor, EF, is given by the expression: 

CA% = gO. (n2) 
CNR,      (C/N), k     ' 

Psychophysics Evaluations 

The performance of the mass enhancement algorithm was evaluated through 

psychophysical experiments. The phychophysical technique used for the evaluation of the 

improvement of the visibility was the two-alternative forced choice (2AFC) measurement. 

Recent results suggest that the alternative forced choice (AFC) techniques are superior 

when the experimental conditions can be precisely controled using synthetic 

computer-generated images or images produced with phantoms and diagnostic equipment 

[75]. The 2AFC method was adopted, instead of the 4AFC (which according to Burgess 

[75] is the best choice), because of its simplicity and its reduced computational and storage 

costs. 

In this method a radiologist was given two images of size 128 by 128 pixels. The noise 

in both images was normal and of the same variance. One of the two images was assigned a 

mass of known intensity, shape and size. The two images had equal probabilities of being 

assigned the mass. A reference image, indicating the correct position, shape and strength 

of the mass in a noiseless background was present to assist the radiologist in his task of 

locating the mass. 

The same process was repeated for both the original and processed images. Eight point 

CNRs were selected and for each point 100 images were reviewed. The radiologist used a 

mouse to indicate his preference on the right or left image. For each point the proportion 

of the correct responses, was calculated and plotted as a function of the CNR. For the 

evaluation of the processed image we generated images, one with a mass and noise and the 

other with only noise. Both images were processed using the threshold algorithm and 

presented as the two alternatives to the radiologist. 

Figure 61 shows the graphical user interface built for the 2AFC experiments. The top 

row contains the two images (left and right) the radiologist is forced to choose from. In the 

middle row (on the right side) one can see the reference image containing the noiseless 

mass (reference image). This image refreshes the radiologist's memory about the shape, 

size and position of the simulated mass. On the left corner there is the control panel. It 
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contains the buttons the radiologist has to click on in order to choose the left or the right 

image, a counter showing the number of the image and a button he/she can use if he/she 

wants to review a previous image. 

2.6.4    Results 

Choosing Optimized Thresholds 

Our task was to choose the threshold values for each level in such a way that we 

obtained best possible improvement in visibility. As a measure of improvement we used the 

EF described earlier. In order to obtain this optimum choice we relied on an empirical 

study of the variation of the EF with the choice of the threshold value for each level. 

In order to reduce the computational complexity we grouped the six decomposition 

levels into three groups: 

Group 1 (high decomposition levels): Levels 1 and 2. This group contained noise and the 

fine details of the image. 

Group 2  (medium decomposition levels): Levels 3 and 4. This group contained a mixture 

of noise and signal. 

Group 3 (low decomposition levels): Levels 5 and 6. This group contained mainly pure 

signal. 

Our study was performed in two stages. First we studied the effects of the threshold 

levels of each group and then we concentrated on the areas and levels we found most 

important and performed a more detailed study. In the first part of our study eleven 

threshold levels were chosen, thresholding at 0 %, 10 %,..., 100 % percent of the 

coefficients for that level. The EF was plotted as a mesh as a function of the thresholds of 

two groups. This was performed for all combinations. Results from the first part of our 

study are presented in Figure 62. These results suggested that only a very small percentage 

of the wavelet coefficients of the high levels should not be thresholded. Therefore we 

concentrated in the area of threshold values from 90 % to 100 %. Figure 63 shows the plot 

of the EF as a function of the threshold values for Groups 1 and 3. It is obvious that even 

if 1 % of the wavelet coefficients survives the thresholding there is no significant 

improvement on the EF. We therefore concluded that all the wavelet coefficients of Levels 1 

and 2 should be set to zero. 

For groups 2 and 3 we pursued into a more detailed study to obtain an estimation of 

the optimized threshold values. For group 2 we concentrated on the area from 90 % to 

100 % and found that an optimum choice depends heavily on the CNR. We therefore opted 
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Figure 61: The graphical user interface used during the 2AFC experiments. 
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EF as a function of the thresholds of Groups 1 and 3 

Group 3 0    0 
Group 1 

Figure 62: Plot of the EF as a function of the thresholds for Groups 1 and 3. The EF value 
increases dramaticaly for a threshold equal to 100 % for the levels of Group 1. 
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EF as a function of the thresholds of Groups 1 and 3 

Group 3 0    0.9 
Group 1 

Figure 63: Plot of the EF as a function of the thresholds of Groups 1 and 3. For Group 1 
we focused on the area from 91 % to 99 %. Notice that the increase of the EF is minimal. 
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for a conservative choice of the threshold and set 99 % of the coefficients of levels 3 and 4 

equal to zero. After obtaining the optimized threshold values for Groups 1 and 2 we 

studied the effects of the choice of the threshold values of levels 5 and 6 seperately. Figure 

64 (a) shows a plot of the EF as a function of the threshold values of Levels 5 and 6. 

Figures 64 (b)-(c) shows profiles of the same plot. In summary we found that the optimum 

choice of threshold values were: level 1: 100 %, level 2: 100 %, level 3: 99 %, level 4: 99 %, 

level 5: 87 %, level 6: 75 %. We point out that as it is obvious from Figure 64 that the 

improvement in CNR does not show a big variation with the choice of threshold value for 

Levels 5 and 6. Even if the threshold value for that level is not close to optimum, one 

would obtain a significant improvement in CNR. 

Results on Simulated Masses 

In this subsection the improvement of the visibility of masses in synthetic phantoms 

using the thresholding algorithm are presented. In Figure 65a an 128 by 128 pixel image 

containing a mass is shown. Figures 65 (c)-(h) show the coefficients that resulted from the 

wavelet decomposition of that image. The image presented in that figure was cropped from 

a 512 by 512 pixel simulated phantom. The image of the wavelet coefficients have been 

window-leveled for best display. The radius of the mass was equal to 15 pixels and the 

noise had a standard deviation equal to 10. The processed image is shown in Figure 65 (b). 

The resulting CNR was found to be equal to 28 (EF=39). Another example is presented in 

Figure 66 (a). The CNR of this image was 0.1, and was also cropped from a 512 by 512 

pixel image. Figure 66 (b) shows the enhanced image. It is obvious that even in this 

extreme case there is a significant improvement in the visibility of the mass. For this case 

the EF was found to be equal to 25. 

Psychophysics Experiments 

The 2AFC method was used to evaluate the enhancement of the visibility of masses. 

The resulting True Positive Curves for a radiologist are plotted as function of the CNR (see 

Figure 67). We note that both True Positive Curves have a sigmoid shape starting from 

100 %, for low CNRs (i.e., the radiologist is able to see everything) and ending, for high 

CNRs, to 50 % (i.e., the radiologist has no clue as to where the mass is and he randomly 

picks an image). We can clearly see that the transition region for all three radiologists has 

been shifted to higher CNRs. This indicates a real improvement in the visibility of the 

masses. 
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EF vs. thresholds of 5th and 6th level EF as a function of the threshold of the 5th level 
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Figure 64: (a) A plot of the EF as a function of the thresholds of Level 5 and Level 6; (b) a 
plot of the EF as a function of the threshold of level 5 (profile of (a)); (c) a plot of the EF 
as a function of the threshold of level 6 (profile of (a)). 
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Figure 65: (a) Original image, (b) Processed image, (c)-(h) Six levels of wavelet decompo- 

sition. 
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Figure 66: (a) A simulated phantom containing a mass. The CNR was 0.1. (b) The resulting 
image after the enhancement. The CNR was equal to 25. 
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Figure 67: The ROC curves for a radiologist for unprocessed and processed images with the 
use of the wavelet thresholding method. The improvement on the visibility of the masses is 

obvious. 
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2.6.5    Summary 

Substantial progress was made in the development of techniques to assist in the 

quantitative evaluation of wavelet based image processing algorithms. We showed that 

synthetic images can provide a useful tool towards benchmarking the effectiveness of 

multiscale enhancement algorithms. However the conclusions reached about the 

effectiveness of these methods largely depend on the realism of the synthetic data. Our 

method capitalized on our previous results to introduce a more realistic model of image 

formation. During the next year we plan to incorporate a model for the appearance of 

tissue, such as presented by Karssemeijer in his work for calcification detection in digital 

mammograms. 

Finally, we reported on the development of objective ways to assess the performance of 

wavelet image processing algorithms. An important consideration in our enhancement 

algorithms was the selection of threshold values. We studied methods for estimation of an 

optimum threshold value and carried out an empirical threshold selection scheme. Our 

experiments showed that by deleting wavelet coefficients within the high frequency 

channels (e.g., levels 1 and 2) we achieved considerable improvement of the contrast to 

noise ratio. Aggressively thresholding wavelet coefficients within the lower spatial 

frequency channels had the effect of removing some of the features of the image (e.g., edges 

which appear exactly within these levels). It is therefore concluded that a more clever 

scheme is needed that will not threshold wavelet coefficients with respect to spatial locality 

but will use spatial/frequency information when modifying coefficients for denoising and 

enhancement. 
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3    Conclusions 

During the past year, we have made significant progress in the development of a 

methodology for accomplishing adaptive contrast enhancement by multiscale 

representations. Our studies have demonstrated that features extracted from 

multiresolution representations can provide an adaptive mechanism for the local emphasis 

of salient and subtle features of importance to mammography. The improved contrast of 

mammographic features make these techniques appealing for computed aided diagnosis 

(CAD) and screening mammography. Screening mammography examinations are certain to 

grow substantially in the next few years, and analytic methods that can assist general 

radiologists in reading mammograms shall be of great importance. 

In the paragraphs below, we summarize our progress and identify future directions of 

research to be carried out during the next year of our investigation. 

We have described some underlying criteria to be followed when designing a database of 

digitized mammograms. Respecting these criteria we constructed a database of 105 

abnormal cases (420 images) with a total of 118 biopsy proven masses. All cases were 

supplied by Shands Hospital at the University of Florida, an ACR accredited and FDA 

certified institution. Mammograms were digitized with a Lumiscan 75 scanner (Sunnyvale, 

California) at 116-micron pixel resolution, 12-bit gray scale resolution and optical density 

range of 0.05-3.00. All abnormalities were annotated hierarchically by a radiologist from 

Shands Hospital experienced in reading mammograms using an inhouse tool called XMam 

described previously in our 1994 annual report. Annotations include the location, shape, 

margins, density, size, surrounding glandular pattern, mammography finding and diagnosis 

based on the standardized American College of Radiology Breast Imaging Reporting and 

Data System. In addition, we developed a subjective evaluation of the detectability of a 

lesion and evaluated all lesions based on this scale. The current database consists of 78 

malignant masses (66.1 %) and 40 benign masses (33.9 %) distributed according to 

subtlety as follows: 28.8 % obvious, 28 % relatively obvious, 25.4 % subtle, 14.4 % very 

subtle, and 3.4 % extremely subtle. 

We computed the coefficients for filters of low order splines used as smoothing functions 

in a fast hierarchical digital filtering implementation of a discrete dyadic wavelet transform 

for both one and two-dimensional processing. A mirror extended input signal to a filter 

bank implementation of the discrete dyadic wavelet transform enabled us to take advantage 

of the symmetry/antisymmetry of both signals and filters for an efficient implementation of 

a dyadic transform. There are no restrictions on the size of the input signal which makes 

this scheme attractive for extracting arbitrary rectangular regions from digital 
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mammograms. The presented algorithm is iterative across scales: a noniterative scheme 

suitable for high speed (interactive) parallel processing can be derived easily by using the 

described approach on each dyadic scale independently. 

We have shown the limitation of traditional discrete wavelet transforms (DWT) for 

characterizing band-limited features, including subtle findings in mammographic images. 

To more reliably isolate noise and identify features through scale space, we formulated and 

developed sub-octave wavelet transforms. If the number of sub-octave bands in each octave 

is a power of 2, we showed that the sub-octave wavelet transform of a function can be 

implemented by a single pair of analysis and synthesis wavelets. FIR filters for a class of 

wavelets designed for a DWT can be used to implement sub-octave wavelet analysis. A 

method of wavelet shrinkage for noise suppression was presented. An algorithm for the 

generalized case of adaptive gain processing was developed and shown to enhance features 

without amplifying noise. These efforts have significance in supporting interactive 

processing while yielding increased sensitivity of mammographic findings. 

Our future efforts will include developing feature clustering techniques and carrying out 

statistical analysis of multiscale coefficients for more efficient removal of noise and 

enhancement of features. We will also explore iterative methods for identifying coherent 

structures of masses (selected from our mammographic database) that are persistent 

through scale space representations derived from our method of sub-octave wavelet analysis. 

We have always advocated the use of linear phase filters for mammographic image 

processing and analysis. Such filters enable control over phase shifts and limit the 

introduction of artifacts during non-linear processing. By virtue of their symmetry 

(antisymmetry), complex Daubechies wavelets were designed to serve this advantage in 

image analysis. 

We described a denoising algorithm based on complex Daubechies wavelets. The 

algorithm was aimed at removing noise while preserving mammographic features. We 

designed a simple method to classify waveform types and replaced wavelet coefficients of 

features with (mathematically) ideal waveform basis. The DC components of the analysis 

were modified using some unique properties of complex Daubechies wavelets. 

We have shown that regions corresponding to masses can be identified reliably through 

frame representations of a continuous multiscale analysis. We showed that subtle features 

characteristic of mammographic findings required a finer parameterization of scale space 

than provided by traditional methods of wavelet analysis carried out at dyadic scales. 

Basis functions for carrying out continuous multiscale analysis were designed to be 

symmetric and have zero-phase providing closed contour boundaries (via zero-crossings) of 

emergent features within each level of scale. 
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Spatial locality was preserved via a frame representation enabling segmentation of 

masses and adaptive contrast enhancement. We suggest that masses in dense 

mammograms can be reliably characterized and identified via geometric constraints (size 

and shape) within a best scale. This shall be pursued during the next year of research. 

Substantial progress was made in the development of techniques to assist in the 

quantitative evaluation of wavelet based image processing algorithms. We showed that 

synthetic images can provide a useful tool towards benchmarking the effectiveness of 

multiscale enhancement algorithms. However the conclusions reached about the 

effectiveness of these methods largely depend on the realism of the synthetic data. Our 

method capitalized on our previous results to introduce a more realistic model of image 

formation. During the next year we plan to incorporate a model for the appearance of 

tissue, such as presented by Karssemeijer in his work for calcification detection in digital 

mammograms. 

Finally, we reported on the development of objective ways to assess the performance of 

wavelet image processing algorithms. An important consideration in our enhancement 

algorithms was the selection of threshold values. We studied methods for estimation of an 

optimum threshold value and carried out an empirical threshold selection scheme. Our 

experiments showed that by deleting wavelet coefficients within the high frequency channels 

(e.g., levels 1 and 2) we achieved considerable improvement of the contrast to noise ratio. 

Aggressively thresholding wavelet coefficients within the lower spatial frequency channels 

had the effect of removing some of the features of the image (e.g., edges which appear 

exactly within these levels). It is therefore concluded that a more clever scheme is needed 

that will not threshold wavelet coefficients with respect to spatial locality but will use 

spatial/frequency information when modifying coefficients for denoising and enhancement. 

These results are encouraging and continue to support that wavelet based image 

processing algorithms can play an important role in improving the imaging performance of 

digital mammography. In summary, we have exceeded the goals as described in our Task 

III and Task IV Statement of Work for and our research and development plans remain on 

schedule. 
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